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Fractal Network Model for Contact
Conductance

The topography of rough surfaces strongly influences the conduction of heat and
electricity between two surfaces in contact. Roughness measurements on a variety
of surfaces have shown that their structure follows a fractal geometry whereby
similar images of the surface appear under repeated magnification. Such a structure
is characterized by the fractal dimension D, which lies between 2 and 3 for a surface
and between 1 and 2 for a surface profile. This paper uses the fractal characterization
of surface roughness to develop a new network model for analyzing heat conduction
between two contacting rough surfaces. The analysis yields the simple result that
the contact conductance h and the real area of contact A, are related as h ~ A2
where D is the fractal dimension of the surface profile. Contact mechanics of fractal
surfaces has shown that A, varies with the load F as A, ~ F” where v ranges from
1 to 1.33 depending on the value of D. This proves that the conductance and load
are related as h ~ F"P’2 gnd resolves the anomaly in previous investigations, which
theoretically and experimentally obtained different values for the load exponent,
The analytical results agreed well with previous experiments although there is a

tendency for overprediction.

Introduction

When a compressive load is applied between two nominally
flat surfaces, the presence of surface roughness produces im-
perfect contact at their interface. Such an imperfect contact
is characterized by a large number of contact spots of various
sizes, spread over the whole contact interface. The degree of
imperfect contact is measured by both the size distributions
of these contact spots as well as the actual area of contact,
which is a fraction of the apparent or nominal surface area.
The prediction of the degree of contact is of great importance
to several engineering problems such as thermal and electrical
contact resistance as well as sealing, friction, wear, and lu-
brication. For surfaces in thermal contact, an imperfect junc-
tion results in a sharp temperature rise across the interface, as
shown in Fig. 1. Such a temperature jump plays a significant
role in the thermal performance of composite materials, porous
insulations, as well as biomedical and aerospace instrumen-
tation (Fletcher, 1988). In microelectronics, several layers of
materials are used for packaging of electronic devices. Im-
perfect contact between these layers seriously affects the elec-
trical and thermal performance of these devices.

Previous studies on thermal contact resistance (Tien, 1968;
Cooper et al., 1969; Mikic, 1974; Yovanovich, 1987) have all
concluded that the nondimensional conductance in vacuum
and the load are related as

he ., F\"
7=Eo <H > 6))

where ¢ is the standard deviation of the surface height, ¢’ the
mean surface slope, £ is a constant, £ is the thermal contact
conductance, F is the compressive load between the surfaces,
H is the hardness of the softer surface, and A4, is the apparent
area of contact. Although it is clear that surface topography
is an important element in a contact process, the validity of
such a relation between conductance and the load is a subject
of question in this study. The question is raised because it has
been experimentally observed that the mean slope ¢’ varies
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with the resolution of the roughness measuring instrument.
Also, several empirical and theoretical studies have reported
different values of the load exponent x ranging from 0.85 to
0.99, as listed in Table 1. This work takes a fundamental look
at the geometric structure of rough surfaces and explains why
the mean slope ¢’ cannot be used in such a relation. Instead,
it proposes a new model to analyze contact resistance that uses
intrinsic surface properties to obtain a relation that will provide
physical insight to the origins of the exponent x.

The structure of a rough surface is usually quite disordered
and often assumed to be random. Nayak (1971) proposed a

TEMPERATURE PROFILE

LOAD HEAT FLOW

‘ |

HEAT FLOW
LOAD

Fig.1 Heat conduction across two rough surfaces in imperfect contact
produces a temperature jump

Table 1 Comparison of load exponents of previous investigations
Reference Load exponent
Tien (1968) 0.85
Cooper et al.(1969) 0.99
Thomas and Probert (1970) 0.92
Yovanovich (1987) 0.95
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Fig. 2 Scale dependence of statistical roughness parameters for a
magnetic tape. Roughness measurements for 8 < 10 were made by
optical interferometry (Bhushan et al., 1988) whereas for 8 > 10 atomic
force microscopy was used (Oden et al., 1991)

statistical characterization of rough surfaces, which used pa-
rameters like variances of the height, slope, and curvature of
a surface. These parameters are extensively used in models of
surface contact (Bhushan, 1990). However, later studies have
indicated that surface topography is a nonstationary random
phenomenon for which the variance of the height distribution
is related to the length of the sample (Sayles and Thomas,
1978) and therefore not unique. Roughness measurements also
show that the variances of slope and curvature depend strongly
on the resolution of the roughness-measuring instrument or
any other form of filter and hence are not unique (Bhushan
et al., 1988; Bhushan and Blacksman, 1990). This can be ob-
served in Fig. 2 where the statistical parameters rms height and
slope are plotted against the magnification of a magnetic tape
surface (Majumdar and Bhushan, 1990a). It is clear that in-
struments with different resolutions yield different values of

the rms slope for the same surface. Therefore the use of the
rms slope o’ in Eq. (1) is not valid.

Roughness measurements show that surfaces contain rough-
ness features at several length scales ranging from millimeters
to nanometers (Majumdar and Bhushan, 1990b). To charac-
terize such a multiscale structure one must use parameters that
are independent of any length scale. This study introduces a
new method of characterizing rough surfaces by fractal ge-
ometry. The fractal characteristics of a rough surface are then
used to develop-a model to predict contact conductance. Before
discussing the details of this model it is necessary briefly to
discuss the theory of fractal geometry.

Fractal Geometry

Fractal geometry is a mathematical language that describes
the structural disorder and chaos of a number of objects found
in nature (Mandelbrot, 1982). Examples of such objects include
the shapes of coastlines, clouds, and mountains. The unique
property of these objects is that as one looks closer and closer,
increasing details of the object keep appearing. These details
tend to follow the same structural pattern at several length
scales of observation. It is common to use Euclidean objects
such as spheres, cubes, flat planes, and smooth curves to de-
scribe such objects approximately and then study the physical
phenomena relevant to them. However, Euclidean geometry
relies on integer values of dimension that characterize smooth
shapes and fails to describe the structural complexity of natural
objects. On several occasions, however, it is crucial to know
the structural details of the object at the length scales relevant
to a physical phenomenon. This is where fractal geometry
becomes important.

The following subsections provide a mathematical descrip-
tion of fractal geometry that is relevant to engineering problems
such as contact conductance.

Hausdorff Dimension. The length of a line is measured by
breaking the line into small units of length e and then adding
the number of units in the form

L=x¢ 2
Similarly the area of surface is measured by breaking up the

Nomenclature
L = apparent characteristic
length of a surface, m A = thermal conductivity,
a = area of a contact island, m? m = magnification; or exponent WmIK!
A = area, m%; A*=A/A, defined in Eq. (25) ¢ = constant in Eq. (1)
b = discretization parameter, n = number of islands in Eq. p = thermal resistance of a sur-
Eq. (22) 18) face asperity, W™K
d = distance between two con- M = measure of an object o = standard deviation of sur-
tact islands, m P(w) = power of the spectrum, m® face height, m
D = fractal dimension of surface g = order associated with the ¢' = standard deviation of sur-
profile or island coastline size of an island, Eq. (22) face slope
D, = fractal dimension of a rough R = effective thermal resistance 7 = gpatial interval in the lateral
surface for a set of contact spots, direction of a surface, m
F = load on a surface, N; WK Y = constant in Eq. (12)
F*=F/HA, R = total thermal resistance, w = frequency of roughness,
G = surface characterization pa- WK m-!
rameter, m, Eq. (10) S(r) = structure function, m? .
h = contact conductance, X = self-affine function Subscripts
Wm K™ h* =ho/\ 8 = magnification a = apparent area
H = hardness of a material, ¥ = scaling factor in Eq. (5) c = cavity
Nm ™% an exponent in Eq. T' = gamma function L = largest island or cavity
(8) e = unit of measurement q = q islands defined in Eq. (22)
! = characteristic length of a n = load-exponent for contact s = series resistance, Eq. (26)
contact island, m area-load relation, Eq. (41) t = total area of contact spots
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Fig. 3 Concept of self-similarity based on Euclidean objects: (a) line,
D = 1, (b) square, D = 2

surface into small squares of size e X e and then adding the
number of units as

A=Xe (3)

It should be noted that in Egs. (2) and (3) the exponents 1 and
2 correspond to the dimensions of the objects. The unique
property of these measures, length and area, is that they are
independent of the unit of measurement € and in the limit e—0
these measures remain finite and nonzero. This is apparent in
Euclidean objects such as a smooth straight line where the
length is independent of whether a centimeter or a micrometer
scale is used. The concept of Euclidean measure and dimension
can be generalized to the form

M=1x @)

where M is the measure and D is a real number. The exponent
D is the dimensions of an object if it makes the measure M
independent of the unit of measurement ¢ in the limit of ¢—0.
This is a simple definition of the Hausdorff dimension whereas
a more rigorous one can be found in Mandelbrot (1982). Con-
trary to common understanding, this generalization allows the
dimension of an object to take noninteger values.

Self-Similarity. Consider a one-dimensional line of unit
length as shown in Fig. 3(a). Each segment of the line, of size
1/m, is similar to the whole line and needs a magnification of
m to be an exact replica of the whole line. Since the length of
the line remains independent of 1/m, it follows that the number
of units is N ~ m. Now consider a square in Fig. 3(b), which
has a side of unit length. Each small square of side 1/m is
similar to the whole square and needs a magnification of m
to be an exact replica of the whole square. However, the num-
ber of small squares in the whole is N ~ m?, In general, for
an object of dimension, D, it follows from the above argument
that

N~mP &)
Hence the dimension of the object can be obtained as
log N
" log m ©)

This definition of dimension, which is based on the self-sim-
ilarity of an object, is called the similarity dimension (Man-
delbrot, 1982).

To perceive what an object of a noninteger dimension looks
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Fig. 4 Recursive construction of the Koch curve of dimension D =
1.26

X(1)

Fig. 5 Qualitative description of self-affinity of a function x(t)

like, follow the recursive construction in Fig. 4, which yields
the Koch curve of dimension 1.26. The first step in this con-
struction breaks a straight line into three parts and replaces
the middle portion by two segments of equal length. In the
subsequent stages each straight segment is broken into three
parts and the middle portion of each segment is replaced by
two parts. If this recursion is done infinite times then the Koch
curve is obtained. The mathematical properties of this curve
are that, firstly, it is continuous but not differentiable any-
where. This is because if the curve is repeatedly magnified,
more and more details of the curve keep appearing. This implies
that a tangent cannot be drawn at any point and therefore the
curve cannot be differentiated. Secondly, the curve is exactly
self-similar because if a small portion of the curve is appro-
priately magnified, it will be an exact replica of the whole Koch
curve. Thirdly, although the curve contains roughness at a
large number of scales the dimension of the curve remains
constant at all scales.

Self-Affinity. The definition of self-similarity is based on
the property of equal magnification in all directions as de-
scribed in Fig. 3(b). However, there are many objects in nature
that have unequal scaling in different directions. For example,
consider the function X(f), which represents the x location of
a particle in Brownian motion as a function of time, ¢, as
shown in Fig. 5. If this curve is repeatedly magnified, more
and more details keep appearing, which suggests that it is in
some sense similar to the Koch curve. However, since the time
t and the location X are two different physical entities, they
usually scale differently. Therefore the function X(¢) is not
self-similar but self-affine. A simple mathematical definition
states that if the point (x, z) is scaled as (y.x, v22) by unequal
scaling factors (y;, v2), such that the probability distributions
of (x, 2) and (y1x, vv»2) are congruent, then (y;, v2) is an affine
transformation and (x, z) is self-affine. A more rigorous def-
inition is available from Mandelbrot (1982). This concept can
be quantitatively shown by the statistics of the Brownian func-
tion, which follows the relation (Mandelbrot, 1985)
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X(yH)=v"X() assuming X(0)=0 %)

where X is the probability distribution of X. Equation (7)
shows that if time f scales by v then the position X scales by
42, Since the time and the position scale differently, the
Brownian function X (?) is statistically self-affine.

The statistics of Brownian motion can be generalized to a
whole class of functions called fractional Brownian motion or
fBm (Mandelbrot and van Ness, 1968). The statistics of fBm
follow the relation :

S(1)= (X +7) =X () ~ |71 ®)

where S(7) is called the structure function and () implies tem-
poral average. For fBm the value of H can vary between 0
and 1. Brownian motion is a special case of this function when
H=1/2. The fractal dimension of self-affine fractals cannot
be obtained from Eq. (6), which is valid only for self-similar
fractals (Mandelbrot, 1985, 1986). Voss (1985) showed that
the dimension of a self-affine function is related to the pa-
rameter Has D = E + 1 — H where E is equal to the number
of arguments of the function X. In the above example since ¢
is the only argument of X, the dimension of the function is D
=2 - H.

With this mathematical background of fractal geometry, a
scale-invariant characterization of rough surfaces is now pre-
sented.

Fractal Characterization of Rough Surfaces

Roughness measurements by instruments at different reso-
lutions have shown that when a surface profile z(x) is re-
peatedly magnified, more and more roughness keeps appearing,
as shown in Fig. 5 (Thomas, 1982; Majumdar, 1989; Bhushan
and Blackman, 1990; Majumdar and Bhushan, 1991). Unless
artificially textured the roughness appears disordered and ran-
dom. Due to the multiscale nature of surface roughness as
evident in Fig. 5, a profile z(x) can be considered to be com-
posed of a superposition of waves of all wavelengths and ran-
dom phases. To characterize such a profile it is necessary to
determine the amplitude of the roughness at each wavelength.
This is typically obtained by finding the power spectrum of
the profile by the relation

1 ([t , g
P(w)= I (SO Z(x) e dx) ©)

where P(w) is the power of a wave of frequency w. Here fre-
quency is the reciprocal of the wavelength and has units of
inverse length. The integral in Eq. (9) is the Fourier transform
of z(x), which provides the amplitude of waves of frequency
«s Whereas P is the square of the amplitude.

Consider an isotropic and homogeneous rough surface of
dimension Dy. The property of isotropy relates to the invariance
of the probability distribution under the rotation of the co-
ordinate axes and reflection on any plane. The homogeneity
of a surface implies that the probability distribution of the
heights is independent of the location on the surface. The
profile, z(x), of such a surface along a straight line and in any
arbitrary direction is of dimension D=D,—1 (Mandelbrot,
1986) and is a statistically valid representation of the surface.
Such a profile is typically obtained by stylus measurements or
by optical techniques.

In all generality, the scaling in the z direction will not be
the same as in the x direction, implying that the function z(x)
is self-affine. For a self-affine fractal profile z(x), the power
spectrum follows the relation (Majumdar and Tien, 1990; Ma-
jumdar and Bhushan, 1990a; Voss, 1988)

2(D-1)
P(w) =%_—2‘D*) (10)

The structure function S(7) can be found as (Berry, 1978)
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Fig. 6 Comparison of simulated fractal profiles of different values of
Dand G

S(1) =< (z(x+7) —2(x))>

=S P(w) (e — Ddow=yG*P~D4-2D) (11

where y is a constant

_ T'2D - 3)sin((2D - 3)w/2)
y= 5 (12)

Comparison of Eq. (11) with Eq. (7) shows that S(7) satisfies
the criterion of an fBm of dimension D.

The fractal nature of a real surface profile can be verified
either by finding its power spectrum and then comparing with
Eq. (10) or calculating its structure function and comparing it
with Eq. (11). Before doing so, however, it is instructive to
understand the interpretation of the parameters D and G that
characterize the spectrum and the structure function. Figure
6 shows four fractal profiles that were generated artificially
by the Weierstrass-Mandelbrot function (Voss, 1988; Majum-
dar and Tien, 1990; Majumdar and Bhushan, 1990a). The first
profile shows that when D = 1, the profile is smooth, sug-
gesting that the low-frequency components are dominant in
amplitude. As D is increased, the high-frequency components
become comparable in amplitude with the low-frequency ones.
Comparison of the third and the fourth profiles shows that as
G is reduced, the amplitude of roughness is reduced over all
frequencies. Note that the vertical scale of the first profile is
less than other profiles, suggesting that when D is increased,
the amplitude is also increased.

It is important to note that the two parameters G and D
that characterize the spectrum are independent of w and there-
fore scale independent. This is in contrast with conventional
methods of roughness characterization by rms height o and
slope o’. Once the power spectrum is known, these parameters
can be derived by taking different moments of the spectrum.
For the spectrum of Eq. (10) they are
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Equations (13) and (14) provide the variances of the height
and the slope, respectively, between the frequencies w; and wy.
For roughness measurements by stylus profilometry, for ex-
ample, the low-frequency limit, w;, corresponds to the length
of the sample whereas the high-frequency limit, wp, corre-
sponds to the Nyquist frequency, which is related to the res-
olution of the instrument. Equations (13) and (14) shows that
these statistical parameters are functions of the two length
scales and their dependence involves the fractal dimension of
the surface.

If the dimension of the surface profile is chosen to be the
limiting case of D = 2, the spectrum behaves as P (w) ~ 1/
w. If it is assumed that w; >> w; then the rms height varies as
In(wy/w;) and the rms slope varies as w;. Now if the surface
profile is magnified by a length-scaling factor 8> 1, it trans-
forms w; and w; to Bwy; and Puwy, respectively. Therefore, one
would predict that the rms height would remain constant and
the rims slope would increase as 3. Figure 2 shows such trends
for the rms height and rms slope for a magnetic tape surface
(Majumdar and Bhushan, 1990a). The data for I <8< 10
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Fig. 7 Structure function of machined stainless steel surfaces. The
numbers associated with each machining process correspond to aver-
age roughness (uzin.) of the surface as specified for General Electric
Roughness Specimen (Cat. No. 8651831G1).

were obtained by roughness measurements using optical
interferometry (Bhushan et al., 1988) whereas for 10 < 8 <
4000, atomic force microscopy was used (Oden et al., 1991).

The evidence of self-affinity of several machined stainless
steel surfaces is shown in Fig. 7. The roughness was measured
by stylus profilometry and is well described by Majumdar and
Tien (1990). The nearly straight-line behavior of the structure
function on a log-log plot suggests that the power-law behavior
of Eq. (11} is satisfied. The slope of the straight line gives the
dimension D whereas thé intercept provides G. The straight
line S(r)~ 7' corresponds to a Brownian profile of D = 1.5.
The data in Fig. 7 indicate that at small scales all the surfaces
profiles are nearly Brownian, whereas at larger scales they are
non-Brownian. Comparison of S(7) for Lapped-4 and Lapped-
8 surfaces suggests that for length scales below 30 pm the
roughness is the same whereas for larger scales, the amplitude
of the Lapped-4 profile is much smaller than that of Lapped-
8. This explains the apparent smoothness of the surface. Com-
parison of Lapped-8 and Ground-8 shows similar roughness
behavior. The Ground-16 and Shape-Turned-32 profiles have
a higher value of G suggesting that the roughness amplitudes
are higher. However, since the slopes of S(r) for Lapped-8,
Ground-8, Ground-16, and Shape-Turned-32 are nearly the
same, the dimensions of these surfaces are equal. Therefore,
the relative amplitude of roughness at different scales will be
the same.

Previous studies (Majumdar and Tien, 1990; Majumdar and
Bhushan, 1990a) have shown that surface roughness can be
deterministically simulated by the Weierstrass-Mandelbrot
function, given as

z(x)=G(D")Z

n=n|

cos2my"x

—a-p 1<D<2; y>1

(15)

Here, the frequency modes are w=+". The W-N function is
self-affine and satisfies all the requirements of an fBm. The
function suggests that for a lateral length scale /=1/w the
amplitude of the roughness varies as

() =GP~ e-Db (16)
Equation (16) is important to this study since it provides a
relation between vertical and the lateral scales of a rough sur-
face.

Size Distribution of Contact Spots

Consider a rough surface z (x, y) of dimension D; for which
its mean plane is defined by the average of the height distri-
bution. The size distribution of contact spots for such a surface
can be obtained by looking at the horizontal cross sections of
the surface at various heights above the mean plane. The series

z=0 2=0.750

z=1.5¢0

Fig. 8 Cross sections of a simulated rough surface of dimension D =
2.5 at different heights above the mean plane (Majumdar and Bhushan,

1990a)
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of such cross sections of a simulated rough surface of dimen-
sion D = 2.5 Majumdar and Tien, 1990), shown in Fig. 8,
indicates that each section consists of a large number of
“‘jslands’’ of different sizes. Mandelbrot (1975, 1982), while
studying the geomorphology of the earth, showed that the total
number of islands of areas greater than a particular area, a,
follows the power law N(A>a)~a 2 wher¢ B = D/2 and D
= D, — 1. The equality in this equation can be invoked by
using a; to be the area of the largest island to yield

N(A=za)=ala™® an
which implies that there is only one largest island. From Eq.
(17), the frequency distribution of islands of area lying between
a and a+da can be obtained as follows

(18)

nia)= —gﬂ:Bafa‘w“)
da
The total area of all the islands, 4,, can now be found to be

ar,
A= SO n(a)ada= 19)

B
1-B*~2-p*

The size distribution of Eq. (17) is for an unloaded surface.
It is assumed in this study that the distribution remains un-
changed upon loading. Although this is not valid for plastic
deformation, it is a first approximation to the real distribution.
Majumdar and Bhushan (1990) have recently shown that
smaller spots are more likely to be in plastic deformation, and
larger spots, which are dominant in heat conduction, are in
elastic deformation. Moreover, repeated loading and unload-
ing encountered in several engineering applications will tend
to make the surface harder, thus promoting elastic deforma-
tion. Therefore, for analysis of thermal contact conductance,
one can argue that the assumption of an unloaded size distri-
bution is reasonable.

It is interesting to note that power laws, similar to that of
Eq. (17), have been observed for nucleation sites during pool
boiling (Lorenz et al., 1974). This behavior can possibly be
explained by recognizing the fact that for horizontal sections
below the mean plane, the distribution of ““lakes’’ formed by
the mouths of the cavities will follow the same power law as
in Eq. (17). It will be shown later that the average distance
between two neighboring islands, of a particular area a, is
crucial for the prediction of contact resistance. This distance
is related to the cavities existing at the plane of cross section.
Imagine the fraction of the apparent area that is not occupied
by the contact spots to be divided into cavities, the charac-
teristic length of which is decided by the distance between the
asperities. Since these cavities can be visualized as inverted
asperities, the size distribution follows as

Ne(Acza,) =ail? a7 P (20a)

where

Aq (2056)

——a.=A,—T—=a

2-D ¢ 2-D""
The size distribution of contact spots and cavities can now be
used to introduce a network model to predict the contact re-
sistance between two rough surfaces.

Network Model

The contact between two rough surfaces can be modeled by
an equivalent surface contacting a smooth plane (see Appen-
dix). Such a contact process produces a large number of contact
spots, whose size distribution follows Eq. (17). Each contact
spot imposes a certain resistance to the flow of heat across the
surface. This resistance is composed of a series of resistances
due to small asperities stacked on bigger asperities in.a self-
similar fashion. However, since all the spots co-exist at the
contact plane, these series of resistances act in parallel. Since
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in the limit of an infinitesimal area, the number of islands
become infinite, the flow of heat follows an infinite and ex-
tremely complex network of resistances. The complexity of
such a network can, however, be reduced by using the self-
similarity of the geometry of rough surfaces. The model in-
troduced now uses the feature of self-similarity to reconstruct
the network of resistances by repeatedly adding a simple group
of resistances infinite times in a self-similar pattern.

The basic element of either a series or a parallel network is
the resistance of a single asperity. For the sake of simplicity
consider an asperity to be a parallelopiped. As suggested
in Eq. (16) the height z of an asperity of length /=1/w is
GP~D2-D) The resistance, p, of a single asperity is

z C

PENPT @l

where X is the effective conductivity of the two surfaces in
series and C = G2 V/A.

The characteristic lateral length / of an asperity is chosen
such that its base area follows ¢ = /2. From Eq. (21) it can be
concluded that the conductance h~1/p varies as h~{° or
h~a®?. This power-law relation between the conductance A
and area a is the essence of the fractal model and is the key
to explain the experimentally observed behavior in Eq. (1).

Discretization of the Size-Distribution. The network model
is developed by discretizing the size-distribution of Eq. (17) in
the following way. An island of characteristic length /, and
area a, = [>is defined to be a g-island and satisfies the relations

A

L
= ;2% and /,=— 22)

bq
Here, A,=L* is the apparent area of the surface and b is a
real number greater than unity. The values of g range from
q. = q < oo, where g; corresponds to the largest island a;
such that @, = A,/b*L. Therefore g, satisfies the relation

aq

log (—-———— D >
_log(Ay/ay) ___ \ET DA

= 23
L= logh 2logh @3

Following Eq. (21), the resistance of a g-island is
pg=Cb*°/L" (24)

The network model is based on finding an effective resistance
of the set of all the g-islands, and then constructing a network
of effective resistances for different values of g.

Effective Resistance of g-Islands. For a particular value
of g, consider the set of all the g-islands co-existing on the
contact plane, which form a parallel path for the heat flow.
Each strand of this parallel network consists of a series of
resistances that arise from each g-island stacked on a series of
asperities. The series-parallel network of neighboring g-islands
is shown in Fig. 9. Since the number of g-islands can be de-
termined from the size distribution, the only unknown quantity
is the number of series resistances in each strand of the parallel
network. The number of asperities in series: depends on the
depth below the contact plane where each strand is joined in
parallel with other strands, If two contact spots are separated
by a distance, /, then the depth of the cavity between them
follows Eq. (16). One now needs to determine the average
distance between g-islands, which can be obtained by the size
distribution of cavities in Eq. (204q).

The size distributions of Egs. (17) and (204) are uniquely
determined by the area of the largest island or cavity, which
are related through Eq. (20b). Since the number of both the
largest island and the largest cavity is unity, the relation be-
tween the two size distributions lies in the equality, N(4 =a)
= N, (A.=a.). Using Eq. (20b) with this equality, the average
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Fig.9 Series-parallel resistance network for two neighboring gislands

length of the cavity, I, = a’/jq, between neighboring g-islands

can be reduced
L L (D H-An”
“4 pt \2-D A%

Equation (25) shows that for small contact islands, that is for
large values of g, the cavity sizes or the distance between the
g-islands is small. Moreover, if the total contact area increases,
the distance between islands is reduced as expected. The dis-
tance d, between two g-islands is the sum of /; and /,, and is
determined by the value of m, that satisfies the relation d, =
L/b ™, Using Eq. (25), m, can be determined to be

D(1-A%\"
log<l+<————(2_D)A*t> >

logb

25)

my=q-~ (26)
Here the exponent of m, corresponds to the base of the two
neighboring asperities in Fig. 9: Thus, the difference, g —
(my+1), is the number of resistances in series in each strand
of the parallel network. Using the expressions for /; and p,,
the total series resistance py, in each strand is

q 1 C b(q+l)D_ b(mq+l)D
pq=C 2} p= <————-— @7)

7D D
i=mgr1 Y L b7-1

The number of strands of order g is obtained from the size
distribution of the g islands and is given by

D
n{ag) =N(A=za,)-N(A=a, ;)=b9w?P <?‘E;~l> (28)

Therefore, the effective resistance R,, which represents the
total series-paraliel network for the whole set of g islands, can
be determined by dividing the total series resistance of each
strand: pg, by the number of parallel strands as given in Eq.
(28). The expression. for R, follows as
cruP [ pP \?
Rq=T<b_D:_1_) (1L—bMa=9P) 29

It is interesting to note that since the difference g—m, is a
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SURFACE 1

SURFACE 2

Fig. 10 Basic group of resistances (a) is repeatedly added to form a
complete resistance network (b)

function of only the fractal dimension and the total contact
area, the effective resistance R, is independent of the size of
the islands and can be called R. The reason for such an in-
dependence can be explained by a scaling argument. The re-
sistance of a g-island is p,~a; ”%. The number of these g-
islands conducting heat in parallel on the contact interface is
n (a;) ~ a;”". Therefore, the effective resistance R ~ r,/n
is independent of a,.

Tree Network. It has been established that the series re-
sistance of each g-island strand joins to form a parallel network
at a depth corresponding to m,. Below this depth the effective
resistance R joins a network of resistances formed by islands
of other values of ¢g. For a particular contact area A% and a
fractal dimension, the difference m,—m,_, is unity. This im-
plies that the effective resistance R,_, joins the network at a
depth lower than that of R,. Therefore, between respective
junctions of R, and R,_; there must be a resistance in series.
This resistance, which is the base in Fig. 9, is P, and is in

series with R, and parallel with R,_,. Since R, is the effective
resistance of g-island strands, one must find the effective re-
sistance of Pm, to be in series with R,. The number of resistances

‘used to find R, was n(a,) and therefore the effective resistance

of Pm,, can be found similarly as

D
. Pm, =Cb"L v? pig-aD
n(ay) L% \bP-1

Equation (30) shows that analogous to R, p is also independent
of the island sizes.

The combination of p and R can be-used to.construct a basic
group of resistances as shown in Fig. 10(a). This group of

30
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resistances can be recursively added to form an infinite network
of resistances, for values of g, < ¢ < o0 and my;, < m, <
oo, This constitutes the complete network for resistance during
a contact process, as shown in Fig. 10(b). The treelike structure
of this network indicates that when heat flows from the lower
surface to the upper, the path branches at each stage and in
the limit, forms an infinite number of resistive elements.
The total resistance, R, which arises from the series-parallel
combination of resistances, can be computed from

11, i
R R 1
+ 31
S ; @1
R pt e
This reduces to the simple form
ZM (32)
R+p+r
where r is given by
=R(p +r) (33)
R+p+r

It is clear from Eqgs. (32) and (33) that the resistances can be
computed by a recursive algorithm. Solving for r Eq. (33) and
substituting into Eq. (32), the total resistance is obtained to

be
R[1 +~/1+4(R/p)]

R= =Rf(R/p) (%)
2(R/p)+[1+V1+4(R/p)]
The ratio R/p follows from Egs. (29) and (30) as
52 b° (b(mq—q)D_ 1)) (35)
o »P—1
Assuming b” >> 1, this reduces to
_ATN\ "
R_(D(1-4% 6
o \2-D)A%

In terms of the real area of contact, the resistance R can be
written as

(37

c D D72 ]
= [— | ——
LP ((2—D)A*;> s D(1-4a%\" |
2-D)A?
Usually it is found that the real area of contact is less than 10

percent of the apparent area. In such a case, Eq. (37) can be
approximated to be

D2
R =£D P (38)
LY \Q-D)A*
Therefore the total resistance R can now be written as
rSRCT D 1% 39)
- LP | @-D)a;

Equation (39) shows that as the area of contact increases
the total resistance to the flow of heat decreases as expected.
The nondimensional contact conductance can be defined as
h* =a/(\A, R), where the standard deviation ¢ of the surface
is used as the characteristic length scale. It should be noted
that the variance of the equivalent surface is the sum of the
variances of each surface. The variance can be obtained by
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integrating the power spectrum between the limits 1/L and
infinity to yield the following:
G(D—I)L(Z—D) R
o= (40)
4-2D
Using Eq. (40) the nondimensional contact conductance can
be found to be

D
g ((2—D)A ,>; @y
f(R/p)N4-2D\ D

Results and Discussion

The fractal network model of contact resistances uses a
deterministic approach to analyze the random phenomenon of
contact conductance. The use of self-similarity in such an ap-
proach considerably reduces the complexity of the problem
and yields the simple and powerful result of Eq. (41).

To obtain the conductance as a function of load F, it is
necessary to establish a relation between the real area of contact
A, and F. Majumdar and Bhushan (1990b) recently developed
a model of elastic-plastic contact between two fractal surfaces.
The analysis showed that the area-load relation follows a power
law as

At~ @2)

The area-load exponent 7 varies between 1 and 1.33 for the
following conditions: (@) When D = 1 the deformation is likely
to be plastic and so y=1; (b) when D = 1.5, the deformation
is elastic and then y = 1.33; (¢) when D = 2, the deformation
is plastic and n = 1. It is clear that there is a reversal behavior
in n as the dimension is increased. The conductance-load re-
lation follows from this as

* ~F*7/P2 3)

Equation (43) shows the origins of the exponent x in Eq. (1).

It is necessary now to determine the reason for the con-
ductance-area exponent to be D/2. Equation (21) indicates that
the resistance of the basic element of the network is p~/"2.
In terms of the area of the resistive element the conductance
is therefore & ~ ™%, Since the basic element is linearly added
to form the complete network of resistances, the exponent in
Eq. (41) is therefore D/2. This result is independent of network
model proposed in this study, and depends only on the fractal
characterization of the surface profiles.

It should be noted that as the dimension of the surface
increases the contact conductance decreases. The reason for
this lies in relation between A4, and a;, of Eq. (19). For a given
area of contact, the area of the largest island decreases as the
dimension of the surface is increased. The largest island of
area g; fully determines the size distribution of islands as shown
in Eq. (17). Therefore, as the dimension is increased, the sizes
of all the islands decrease. Since smaller islands impose greater
resistance to heat flow, an increase in dimension results in
lower conductance.

Previous studies have indicated that the load-exponent usu-
ally lies between 0.85 and 0.99 as shown in Table 1. Since the
relation between the fractal dimension and the load exponent
has been established, it is now possible to explain why this

.exponent lies between 0.85 and 0.99. Figure 7 shows that when

surfaces are ground, the fractal dimension D is close to 1.5.
For D = 1.5the value of 5 = 1.33. Therefore, the conductance-
load exponent 5D/2 is equal to unity. As the value of D is
increased toward 2, the value of » decreases toward 1, thus
maintaining the product n D/2 to be close to or slightly less
than unity. The lower limit of 4D/2 occurs when both D and
7 go to unity and then nD/2=0.5,

Figure 11 shows a comparison of the present analysis with
some experimental results obtained from previous studies. For
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Fig.11 Comparison of network model with previous experimental data:
1 from Tien (1968); 1 from Yovanovich (1987)

lack of surface material properties such as hardness and elastic
modulus, an assumption of purely plastic deformation cor-
responding to = 1 has been made. The data of Fried and
Atkins (1964) were obtained for SS304 stainless steel specimens
of size 5.08 cm X 7.62 cm and of standard deviation o = 1.56
um. Tien (1968) showed that these data could be correlated
with a load exponent of 0.85, which corresponds to D = 1.7.
However, this value of the dimension in Eq. (32) overpredicted
the data that span the predictions corresponding to dimensions
between 1.9 and 1.99. Although the agreement was better with
the data of Mikic and Rohsenow (1966), the present theory
still seemed to overpredict. Hegazy (1985) obtained data for
specimens of nickel Ni200 (solid triangles) with a standard
deviation of ¢ = 8.48 um and used a load-exponent of 0.95
to correlate his data. The data were in excellent agreement
with the predictions for D = 1.95 instead of 1.9. Hegazy (1985)
also obtained experimental data for stainless steel 304 speci-
mens (open circles) of ¢ = 6.29 um, which are in excellent
agreement with the predictions for D = 1.99. In general, al-
though the theory is in reasonable agreement with experiments,
it tends to overpredict. It is now necessary to explore the
reasons for this overprediction.

It should be noted firstly that the present theory deals with
isotropic surfaces. Machining processes such as grinding pro-
duce anisotropic roughness for which the values of the char-
acterization parameters D and G will vary with direction in
the (x, y) plane. Comparison with theory and experiments
therefore may not be reasonable. However, it can be argued
that a comparison will yield equivalent values of D and G that
will lie between their corresponding maximum and minimum
values for an anisotropic surface.

As shown earlier, the variance or the mean slope of a surface,
which are provided by previous studies, cannot uniquely char-
acterize the spectra of rough surfaces. Since none of these
investigations provided information about the spectra of the
surfaces, it is difficult to verify the relation between the di-
mension of those surfaces and the contact conductance. Al-
though the present results match the experiments well, a
complete verification would require information on both the
spectrum and the contact conductance of the surface in ad-
dition to the actual hardness of the surface. Currently, ex-
periments are being performed to check the validity of the
network model. Nevertheless, a functional relationship be-
tween the conductance, load, and the fractal dimension has
been established in this study. .

Previous experimental studies have all indicated that in ad-
dition to the variation of the load exponent, the actual (di-
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mensional) contact conductance may vary considerably even
for specimens of the same material. This variation was gen-
erally attributed to the variation in mean slope, which was
then used to nondimensionalize the conductance and collapse
the data into one power law, Earlier in this paper, it was shown
that mean slope is an instrument-dependent parameter and
cannot be responsible for variation in contact conductance
data. This suggests that other material or topographical prop-
erties of rough surfaces produce uncertainty in the experi-
mental data. In particular, if a surface work hardens during
surface machining or the contact process, the actual hardness
of the surface is greater than the bulk value. This tends to
promote elastic deformation and increase the exponent 7 in
Eq. (42). The present model also neglects the presence of any
oxide film on the surface. Unless carefully prepared, such films
are always present on the surface and can impose considerable
resistance to heat flow. For thermal contact conductance, one
also needs to include the effect of phonon transmission through
thin films. A source of overprediction in this model is that the
resistance to lateral heat flow is assumed to be zero. The present
study introduces a framework for predicting contact con-
ductance in which the lateral heat flow resistance can be in-
cluded in the future.

Conclusions

The fractal nature of rough surfaces suggests that statistical
parameters like the mean slope or the standard deviation of
the height are not unique for a surface. Instead, they depend
strongly on the roughness measuring instrument or the length
of the sample, respectively. This is mathematically proved in
this study and experimentally shown for over three decades of
length scales for a magnetic tape surface. Therefore, the use
of the mean slope to correlate contact conductance data will
lead to ambiguity.

This work introduces a new fractal model to predict contact
resistance as a function of the load on the surfaces. During a
contact process a large number of contact spots are created at
the contact plane. These spots form an infinite and complex
network of resistances. The complexity of this network is largely
reduced by using the self-similarity of rough surfaces, which
allows the addition of a simple group of resistances to build
an infinite network. The analysis of this network yields the
sample and powerful result that the conductance is related to
the load by a power law where the load exponent is a function
of the fractal dimension of the surface profile. Results of this
model agree well with experimental data of previous studies,
although the theory tends to overpredict the data.
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Fig. A1 Static contact between two surfaces is equivalent to the con-
tact between a composite surface and a flat plane

as contact between one equivalent rough surface with a flat
plane, as shown in Fig. Al. For the equivalent surfaces, the
structure function S(r) is given as:

S(ry=<{(z(x+7) —z(x))> (A1)
where

Z(x) =z1(x) — 22(x) (A2)
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T —
@2 (x+71) —25(x))?
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APPENDIX
The contact between two rough surfaces can be modeled

Journal of Heat Transfer

Since the two surfaces are statistically uncorrelated, the cross-
product term (2(z;(x+7) — z1(x))(z2(x+7) — Z2(Xx))) goes
to zero. The equation then becomes

S(1) =z (x+7) =21 (¥)) 2+ (22 (x+7) —22(x))*
which reduces to

(A4)

S(7) =51(7) +S2(7) (A5)

Therefore the structure function of the equivalent surface is

the sum of the structure functions of the individual surfaces.

Since the power spectrum P(w) is related to the surface
function S(7) as

S(r)= S P(w) (exp(—iwr)—1) dw (A6)

it is evident that the power spectrum of the equivalent surface
is the sum of the power spectra of the individual surfaces, Pw
= Pi(w) + P(w). For the contact between a rough surface
and a flat plane one must derive the value of the dimension
D and the scaling constant G from the spectrum or the structure
function of the equivalent surface.
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1 Introduction

Parallel plate and double pipe heat exchangers find current
application in industrial processes for energy conversion. The
need for accurate sizing of the equipment and its thermody-
namic optimization increases when the temperature difference
between the fluids decreases and becomes paramount when a
very high efficiency is demanded.

A basic unit essentially consists of two flow passages sep-
arated by a conducting wall. Through this, the two heat carriers
thermally interact, flowing either concurrently or countercur-
rently. A double-pipe device can therefore be schematized into
a couple of concentric tubes, the inner one providing the heat
transfer surfaces.

As discussed in classical thermal engineering textbooks (Kays
and London, 1984; Kakac et al., 1981; Spalding, 1984), two
essential assumptions are customarily made in the design of
heat exchangers: (/) The film coefficients are considered to be
insensitive to the longitudinal distribution of both the heat flux
and the surface temperature; and (i) they are taken to be
uniform, irrespective of the heat exchanger length. There is
substantial evidence (Stein, 1966a) that based upon the above
assumptions, the sizing of the heat transfer surfaces is satis-
factory for turbulent flow conditions. The local heat transfer
rate is scarcely influenced by the thermal boundary conditions
in those cases, and the thermal inlet region usually covers a
small part of the heat transfer length. When dealing with lam-
inar flow conditions, however the thermal inlet length can often
be of the same order of magnitude as the heat exchanger length.
Film coefficients are by no means uniform and also become
very sensitive to the thermal boundary condition. Since the
two streams are thermally coupled by the conducting wall, the
boundary condition for each of them is not defined a priori.
It is instead dependent on the geometry and the thermal prop-
erties of the wall, other than the operating conditions of the
device. The problem is made even more complex when axial
conduction along the wall is taken into account. Axial wall
conduction affects both the distributions of the heat transfer
coefficients and the overall thermal performance of the device.

In this paper, the effects of thermal coupling in double-pipe
heat exchangers are dealt with. Heat conduction along the wall
is accounted for in the analysis and its influence on heat ex-
changer effectiveness and entropy production is discussed.

2 Literature Survey

The earliest investigations on double current laminar heat
exchangers are due to Stein (1964, 1965a, 1965b) who presented
an analytical solution for concurrent flow. The mathematical
aspects associated with countercurrent flow were first discussed
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arating the fluids. In a countercurrent arrangement, thermal coupling is demon-
strated to have a definite influence on all the more important heat transfer parameters,
such as the wall temperature, the heat flux density, the local entropy production
rate, and the Nusselt number distributions. The overall performance of the device
is considered under a second law point of view, and a complete parametric study

by Nunge and Gill (1965). They also presented extensive results
for double-pipe heat exchangers (Nunge and Gill, 1966). The
approach was based upon the reduction of the primitive dou-
ble-region problem into a couple of one-region Sturm-Liou-
ville problems. Coupling conditions had to be matched at the
common boundary, and an equivalent of the orthogonality
condition devised over both regions. This constitutes a major
difficulty in orthogonal expansion solutions and the accuracy
of the procedure used by Nunge and Gill has actually been
questioned (see Stein, 1966b, and Blanco et al., 1968, for
discussion). Stein (1966a, 1966¢) presented a generalization of
the method for both concurrent and countercurrent flow. The
method was extended by Blanco and Gill (1967) to the case of
slug flow rather than fully developed laminar flow, while the
effects of axial conduction in the fluids were considered by
Nunge et al. (1967). The superposition of known solutions in
the form of the Duhamel theorem was applied to the concurrent
case by Gill et al. (1968). An alternative approach is based on
the expression of the temperature field in each stream in terms
of unknown functions of the heat flux across the walls, thus
creating a system of cross-linked integral equations to be solved
numerically. This was adopted by Bentwich (1970, 1973) to
deal with two-stream and multistream parallel-flow heat ex-
changers. An original general methodology for conjugated
problems was presented by Papoutsakis and Ramkrishna
(1981). The energy equation was decomposed into a system of
first-order differential equations, which again gave a Sturm-
Liouville problem. Sample temperature distributions in con-
current and countercurrent heat exchangers were presented on
account of axial heat conduction in the two streams. An ef-
ficient algorithm for solving two Sturm-Liouville equations
coupled at a common boundary was given by Mikhailov (1972,
1973a). The analytical solution was based upon a finite integral
transform and applies to a wide class of conjugated boundary
value problems. A specialized version of the method for con-
jugated Graetz problems was formulated by Mikhailov (1973b,
1983) and illustrative examples were presented by Mikhailov
and Shishedjiev (1976), among which the case of concurrent
double pipe heat exchanger was treated. The same problem
has recently been treated by Cotta and Ozisik (1986) using a
more refined version of the same method. Finally, a fully

'numerical solution for developing flow in countercurrent dou-

ble-pipe heat exchangers has been presented by Lin and Tsay
(1986).

Under the assumptions of fully developed laminar flow and
constant property fluids, a few general comments can be made
on the thermal behavior of double-stream heat exchangers.

With concurrent flow:

(!) A thermally developed region always exists asymptot-
ically. This may or may not be attained in practical cases,
depending on the heat exchanger length. The length of the
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thermal inlet region is a function of the wall thermal resistance,
fluid properties and the operating conditions.

(ii) Asymptotic values of the heat transfer coefficient can
be significantly less than those corresponding to the boundary
condition of uniform wall temperature, condition , for
single-stream cases. They cannot be larger than values. corre-
sponding to the boundary condition of uniform heat flux,
condition (Stein, 1965a). Such behavior is consistent with
single-stream heat transfer results when imposing an expo-
nentially decreasing heat flux at the duct wall (Shah and Lon-
don, 1978). .

(sii) Distributions of the heat transfer coefficient in the
thermal inlet region show good agreement with single-stream
solutions for case . Despite this, the wall temperature can
exhibit significant longitudinal variations (Gill et al., 1968).

With countercurrent flow:

(i) The heat transfer rate decreases monotonically from
the extremities to the central part of the heat transfer length
where a minimum is always achieved. Eventually, a central
region of thermally developed flow can occur, according to
the heat exchanger geometry and the operating conditions.

(ii) Asymptotic values of the heat transfer coefficients are
never less than values corresponding to case @ , but can be
significantly larger than reference values for the boundary
condition (Stein, 1966a).

(iii) For each stream, the heat transfer coefficient is
bounded by single-stream solutions and close to the
entrance (Lin and Tsay, 1986). It may be worth noting that in
spite of the influence of thermal coupling on the distributions
of film coefficients an overall heat transfer coefficient can still
be defined. According to the Seban et al. (1972) approximate
method, this can be used with sufficient accuracy.

(fv) Theeffect of axial heat conduction in fluids is generally
negligible for Peclet numbers greater than 100 (Nunge et al.,
1967).

In all the above literature, the effect of axial conduction
along the wall separating the two streams was overlooked. This
has been recognized to have a definite effect on heat transfer

-t - .y v X

r o o
: @ uew
o
=NC |-
. R ¢ .
Fig. 1 Schematic of the double-pipe heat exchanger

efficiency in countercurrent flow (Kroeger, 1966; Barron and
Yeh, 1976) and crossflow (Chiou, 1983) heat exchangers. Very
accurate results for the laminar flow case were given by Mori
et al. (1980) for parallel plate countercurrent heat exchangers.
Sample data for both concurrent and countercurrent double
pipe heat exchangers were presented by the authors (1984a).
Double-stream heat exchangers have also been extensively
investigated from a thermodynamic point of view, and many
valuable second law analyses can be mentioned (see, for ex-
ample, Bejan, 1977; Golem and Brzustowski, 1976; Ciampi
and Tuoni, 1979). In all of them, however, the lumped system
approach has been employed, while assuming a uniform heat
transfer coefficient and omitting axial wall conduction. The
latter effect was considered by Chowdhury and Sarangi (1983),
who also derived a simple formula to optimize the thermal
conductivity of the wall. That criterion has been found to be
valid even in the case of laminar balanced counterflow heat
exchangers (Pagliarini and Barozzi, 1984b, 1985).

3 Analysis

The system under consideration is schematically depicted in
Fig. 1. Two Newtonian constant property fluids are assumed
to flow under steady and laminar conditions through the equip-
ment with fully developed velocity profiles. Internal heat gen-
eration, viscous dissipation, and axial heat conduction in the
fluids are neglected.

According to the notation in the figure, indexes 1 and 2,
respectively, designate the inner and outer stream. It is assumed
that heat is transferred from stream 2 to stream 1. The fluid

Nomenclature
a = internal radius of the inner I' = nondimensional inlet tempera-
duct (Flg 1) Nu = Nusselt number (equations (8)) ture of the outer stream =
b = internal radius of the outer Pe = Peclet number=U d, (c, p/k)s To2/ To
wall of the outer duct (Fig. 1) g = nondimensional heat flux at & = wall thickness
B = radius ratio=b/a the solid-fluid interface (equa- A = nondimensional wall thick-
¢, = specific heat at constant pres- tions (6)) ness = (6/a)
sure Q = heat transferred per unit time e = heat exchanger effectiveness
dy, = hydraulic diameter from stream 2 to stream 1 (equation (14))
H = ratio between the flow-stream r’ = dimensional radial coordinate © = nondimensional tempera-
capacity rate of outer and in- r = nondimensional radial coordi- ture=T7/Ty,
ner flow =(m cp)y/(m coh nate=r'/a 0, = nondimensional bulk fluid
@ = thermal boundary condition § = rate of entropy production per temperature (equation (7))
referring to uniform wall heat unit volume 0, = nondimensional temperature at
flux S = rate of entropy production the wall-fluid interface
k = thermal conductivity T = absolute temperature o = density
K = nondimensional thermal con- Ty = absolute inlet temperature o = nondimensional rate of en-
ductivity = k/k; @ = thermal boundary condition tropy production per unit vol-
Ko = optimum K value=Pe,/ referring to uniform wall tem- ume (equation (9))
2 +H™ Y], from Chowdhury perature £ = nondimensional rate of en-
and Sarangi (1983, equation u’ = dimensional axial velocity tropy production
(11)) u = nondimensional axial veloc- .
L’ = dimensional length of the heat ity=u'/U Subscripts
exchanger U = fluid mean axial velocity f = fluid
L = nondimensional length of the x’ = dimensional axial coordinate s = solid
heat exchanger=L'/a x* = nondimensional axial coordi- x = local value
L* = nondimensional length of the nate=x'/(2 a Pe)) w = wall-fluid interface
heat exchanger=L’/(2 a Pe)) z* = nondimensional axial coordi- 1 = inner stream
m = mass flow rate nate=L* —x* 2 = outer stream
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temperature is uniform at the inlet sections; the condition
Ty > Ty, therefore holds.

For the sake of brevity, the mathematical problem is directly
stated in nondimensional terms. Use is made of symbols and
definitions given in the Nomenclature. The system is subdi-
vided into three physically homogeneous regions, namely,
stream 1, stream 2, and the solid wall separating the fluids.

For each region the energy equation is written:

Stream 1: .
30, (130, 36, .
=4 - — 4 —— <[*
U (r FPRre) Osx*<L* O=r<1 (1)
0100, 1)=6q; (1a)
01,
5 & 0=0 (1b)
Solid Wall:
100, 0°0,\ 90, .
4 Pe (r ar+a )+a 5=0 O=x*s<L* I1=srsi+A
@
,1)=0 Qa)
Stream 2:
30, Ky ., ae2 30, .
o =47 (B - (1+A)) +5,7 0=<x*<L,

1+A<r=B (3)
0,00, n=0y, (concurrent case)
Ox(L*, r)=0¢p,

a
__QZ (x*, B) 0

(3a)
(countercurrent case)

(3d)

In equations (1) and (3), u; and u, are nondimensional dis-
tributions of the fluid velocity, as given in the literature (e.g.,
Shah and London, 1987, Chap. 5, p. 78, and Chap. 12,
p. 205, for circular and annular ducts, respectively). Pe, is the
Peclet number for the inner stream, H is the thermal capacity
ratio of the streams, H=(mc,),/(tncy), and A is the nondi-
mensional wall thickness.

Continuity conditions for the temperature and the heat flux
apply at the interfaces:

[¢)
0., D=0, 1), 2 (4a)
o,
O,(x*, 1+ A)=0,(x*, 1+4), —_— (x*, 1+ A)
K99,
K 3 (x*, 1+A) (4b)

The wall temperature and the heat flux at the solid-fluid
interfaces, as well as the bulk fluid temperature and the local
Nusselt number, have practical significance. They are defined

as
ewl =9S(X*, 1) (5(2) .
0,2 =04(x*, 1+4) (5b)
(ae ) .
q1= ar (6a)
B=K;(1+4) <3—:>w (6b)
Op=1+8 SO g, d&* (7a)

528 / Vol. 113, AUGUST 1991

Downloaded 15 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

8

B
Op=I+ T+AH SO q d¢* (7b)
4 .
Nuy =2 ——— 8a
M= o )
Nuﬂ:l B-(1+4) @ 8b)

K, 1+A ©6,,—0p

By definition equation (65), the heat flux density g; is referred
to the inner wall surface (r = 1) to allow direct comparison with
q,. Equations (5b), (6b), and (8b) hold for both the concurrent
and the countercurrent flow case. Equation (7b) is written for
countercurrent flow heat exchangers. The proper form for the
concurrent flow case is obtained by changing the variables z*
and {* withx*=L* —z*and £* = L* - {*, respectively. Finally,
I' in equation (7b) is the ratio of the inlet fluid temperatures
Tt and Ty measured on the thermodynamic Kelvin scale.

The overall rate of entropy production, S, will be used to
quantify the heat transfer process according to a second law
point of view. Following London and Shah (1983), this quan-
tity is nondimensionalized as

S T
Q

where Q is the total amount of heat transferred per unit time
from stream 2 to stream 1.

The local entropy production rate per unit volume, s, is
nondimensionalized and is expressed as follows (de Groot and
Mazur, 1962):

k a Tm 1

1 00\?% [56\?
o & <<2 Pe, ax*) * <E)) ©)

Equation (9) holds for the solid wall. It applies to the fluid
regions as well, viscous dissipation in the fluids having been
disregarded. The total entropy production rate can be split
into three terms I;, I, and L,, pertaining to the fluid streams
and the wall, respectively. One therefore has

p=2-0

L=I;+I+X (10)
The latter term is given as:
1+A pLla
Ly=4r Pe, S.l SO asr dr dx* 43))

Similar expressions can be written for I, and L,. However,
the following alternative forms have been used here:

y
1 1
=47 Pe S <—-———~>dx* (12a
1)y @1 0, O, )
Lx
Ezz4ﬂ(1+¢DPelS0 qZ<6L;*E£;>dx* UZb)
W,

These or equivalent expressions are commonly found in the
literature (see, e.g., equation (5) from Bejan, 1982), to calculate
the entropy production rate in pipe flow heat transfer. Equa-
tions (12) are used here for convenience, since 0, 0, and g
are known at the end of the computational procedure, while
the temperature distributions in the fluids are not. Also, equa-
tions (12) allow the numerical results to be checked against the
integral entropy balance. This reads

(In B, (L*)+ H In (Op(L*)/T))  (13)

TOuLY)-1

The thermodynamic performance of heat exchangers is usu-
ally expressed in terms of the effectiveness, ¢, and defined as:

_ 0
(m Cohmin (To2— To1)

From equations (13) and (14), the following relations be-
tween L and ¢ are easily demonstrated:

(14)

Transactions of the ASME


file:////2Pe

2 T T .
o} —— K;:10000 (ggnd?xzcilzll.
18l —. —. Ks=10000
____K,:100
Wl T

141

12}

1 e e 1! 1 1 1

2 x* - 10°2 5 10° 2 <5~ 2 16°5 2 Wz 2
Flg.2 Axlal distributions of bulk fluid and wall (radially averaged) non-
dimensional temperatures; H=1, Pe, =500, L=100, B=6, A=0.5, and
K] =1

18 e — ; — ,
q \~\ K = 10000 - no axiat conduction /'
14 '\ . —.K;=10000 ./

_ - .K;=100 ’/

1.2 /\

10° 5

.2 n 1‘3 I L I_2 1 L

2 x*— 10" 2 5 10° 2 <5~ 2
Fig. 3 Axial distributions of the nondimensional heat flux at wall-to-
fluid interfaces; H=1, Pe; =500, L=100, B=6, A=0.5, and K; =1

L 1 T
I—I/I‘:;(T:ﬁi [11’1 [1+e-1)]

+Hln [1—% (1—%)}} (15q)
for H>1, and

r 1.1 (1
- — In [1+€H(T -1
I-1/T e(- { o [1+eHT -1

12 |H
+1n [1—e<1—%>B (15b)

for H< 1. The quantity (1 — 1/T') is used here as a normalization
factor for L.

4 Procedure and Accuracy

A seminumerical method had been suggested (Barozzi and
Pagliarini, 1984, 1985) to deal with conjugated heat transfer
in pipe flow. This has been extended to the case of parallel
flow heat exchangers. The technique relies upon the application
of the superposition principle at the solid-fluid interfaces, and
the numerical solution of the energy equation in the wall, by
a finite element method. A detailed description of the method
having been given elsewhere (Barozzi and Pagliarini, 1985),
the procedure will be simply outlined here.

By applying the Duhamel theorem at the solid wall bound-
aries, one has
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20 T T y S r T
- . Ks=10000 — no axial conduction
Nu,|
_____ K, = 10000
2r ____K,-100
8 = e e et
4 1 »\® " 1 L L 1 1 s 1 1
5 10° x— 5 10° 2 5 <=5 2 16° 5 .z 16° 5

Fig.5 Axial distributions of the local Nusselt number for outer stream,
and reference one-stream data for boundary conditions () and (D);
H=1, Pe;=500, L=100, B=6, A=0.5, and K, =1

0,(x*) = 6, (x*) = g1(0) Nun (")
+ Sx* 2 dq,(E")
O Nugy(x*—§*) d&*
The expression holds for both streams 1 and 2. In the case
of countercurrent flow, however, x* and £* must be replaced
by z* and ¢*, respectively, when referring to the outer stream.
Nuy; designates the local Nusselt number distribution for a
uniformly heated circular (stream 1) or annular (stream 2) duct.
Nug values are from the literature (Shah and London, 1978).
Equation (16) allows the wall-to-fluid temperature differences
to be computed for arbitrary distributions of the heat flux.
The computational procedure is iterative. It is initialized with
guessed distributions of ©, and Nu,. These complete the set
of boundary conditions for equation (2). The energy equation
in the wall is solved numerically, by a finite element method.
Triangular elements with linear temperature distribution are
used in the discretization procedure. From the distribution of
O, updated values of ¢, g3, Op1, and O, are obtained through
equations (6) and (7) respectively. Wall-to-fluid temperature
differences are then computed by equation (16) and Nu, dis-
tributions obtained from equations (8) to start a new run. The
prescribed convergency level was based on the total heat trans-
fer rate, Q, and set equal to 0.001 percent. In all the cases
considered, convergence was achieved in less than 14 iterations.
Distributions of Nu,, ¢, 0,, and ©, are available at the end
of the computational process. The entropy production rates
are thus computed by equations (9)-(12). Temperature distri-
butions in the fluid streams are not needed and not computed.
However, they can be obtained by superposition, when nec-

ag*  (16)

_essary.

Previous numerical experiments with single-stream problems
(Barozzi and Pagliarini, 1984, 1985) showed that the accuracy
of Nu, values is better than 2 percent. Direct comparison with
results for the two-stream case is more difficult, since no tab-
ulated data have been found in the open literature. Two checks
have been attempted against the available results given in
graphic form for the countercurrent case. Omitting axial con-
duction in the wall, 6,, and Nu, distributions have been com-
pared with Nunge and Gill’s (1966, Figs. 5 and 7) results.
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Fig. 6 Axial distributions of local entropy production rate {radially av-
eraged) for the wall; values referred to the mean values of 5; I'=2, H=1,
Pey=500, L=100, B=6, A=0.5, and K; =1

Maximum deviations of 6 and 10 percent have been found,
respectively. This can be considered acceptable in view of the
moderate level of accuracy of the results given by Nunge and
Gill (1966), as discussed by Stein (1966b, 1966¢). No results
being available on account of axial wall conduction in double-
pipe heat exchangers, a version of the program has been spe-
cifically prepared to provide comparison with the data of Mori
et al. (1980) for parallel plate heat exchangers. The agreement
with the results shown by Mori et al. (1980, Fig. 10) has been
very good.

5 Results

Both the concurrent and countercurrent flow configurations
have been investigated. However, only results for the coun-
tercurrent case will be presented and discussed in detail.

From the above analysis, the nondimensional groups rele-
vant to the problem are K;, K, B, A, L, H, and Pe;. The
absolute temperature ratio I" also appears in the formulation
as far as the problem is considered under a second law point
of view. Throughout this analysis, I is kept constant at a value
of I'=2. It is worth pointing out that, for any value of I', £
can be computed by equations (15) from given values of € and
H. Note that the effectiveness concept derives from first law
considerations; thus € is independent of I'. The range covered
by the present investigation is as follows: L =10 and 100;
A=0.5and 2; B=3 and 6; K;=1, 10, 100, 1000, and 10,000;
K;=0.1, 1, and 5; Pe; = 500, 1000, and 10,000; H=0.5, 1, and
2

The effect of thermal coupling of the two streams is well
illustrated by the distributions of heat flux and temperature
at the wall interfaces, as well as the fluid bulk temperature
and the Nusselt number for the two streams. Plots of those
quantities are presented in Figs. 2, 3, 4, and 5 for a relatively
long (L=100), balanced (H=1) heat exchanger. All these
quantities are independent of I'. Data for that single case allow
the general trend of the results to be described. Note that in
the figures use is made of two separate scales for x* and
z*=L*—Xx*, one running left to right and one running right
to left, from the extremities to the middle of the device length.

When overlooking axial heat conduction in the wall, heat
transfer results are characterized as follows (Pagliarini and
Barozzi, 1984a); (i) The temperature of the incoming fluid
coincides with the wall temperature at the inlet section; (i) the
nondimensional heat flux density is point by point equal on
the two sides of the wall, and, typically, its distribution shows
a minimum in the central part of the heat transfer region; and
(iii) for each stream, the distribution of the Nusselt number
rapidly decreases near the inlet section of the stream, Nu,
ranging between Nuzyand Nuy distributions (i.e., single-stream
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Fig. 8 Axial distributions of local entropy production rate (radially av-
eraged) for the outer stream; values referred to the mean value of o;;
r=2, H=1, Pe; =500, L=100, B=6, A=0.5, and K; =1

results for boundary condition @ and @ , respectively). Nu,
plots take on a minimum, and eventually show a constant value
region in the central part of the heat exchanger.

All the above trends are modified in the presence of axial
conduction in the wall:

(/) Two isothermal areas are created at the wall-to-fluid
interfaces, close to the extremities, and the wall temperature
does not coincide any further with the inlet fluid temperatures
at x* =z* =0. The wall-to-fluid temperature difference and the
length of the isothermal zones both increase for increase of
axial conduction effects. This is well illustrated in Fig. 2 where
the effect of the wall conductivity is stressed. It is observed
that for increasing K, the wall temperature tends to become
more uniform, and the outlet temperature of the internal
stream, O (x* = L*) decreases while O,(z* = L*) increases cor-
respondingly. As a consequence, the total heat flux and the
effectiveness of the heat exchanger reduce.

(i) Axial wall conduction also uncouples the heat transfer
processes on the two sides of the wall. Plots in Fig. 3 still
display a general trend similar to the one observed in the
absence of axial conduction up to K;=100: A central zone is
found, where the heat flux density is uniform and equal over
the two sides of the wall. The situation completely changes for
high K, the g plots taking on a monotonically decreasing trend
from the inlet to the outlet with one single crossing point.

(iii) Theeffect of axial wall conduction on the distributions
of the Nusselt number is demonstrated by the coincidence of
Nu, with the corresponding (circular duct or annulus) single-
stream solution, case , near the inlet section. Farther down-
stream, both Nu, and g reach an asymptotic value in the cases
shown in Figs. 4 and 5. For low K| values this may be higher
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Fig. 9 Normalized nondimensional entropy production rate, as a func-
tion of nondimensional thermal conductivity of the wall, K;T'=2, B=6,

and K; =1; legend: w: in the wall; 1: in the inner stream; 2: in the outer
stream; f: total value; o: Pe, =500; e: Pe,=1000; o: Pe;=10,000

than the fully developed one-stream value, case @ , but ap-
proximates solution for increasing K.

Distributions of the local entropy production rate in the
streams and the wall are presented in Figs. 6, 7, and 8 for
T'=2. Here, ¢ has been averaged radially over the section of
the region (stream or wall) concerned, and referred to the mean
entropy generation rate in the region itself. The results allow
some insight to be attained into the irreversible nature of the
heat transfer process.

It can be observed first, that distributions of ¢ in the wall
and the streams are quite sensitive to variations in the wall
conductivity. For K= 10,000, the local entropy production in
the fluids is maximum at the inlet sections, and decreases
monotonically downstream. For reducing K, the plots of o,
and o, take on a less regular trend, eventually presenting in-
termediate maxima and minima, and the values decrease pro-
gressively at the inlet, while increasing in the outlet regions.
The local entropy generation rate in the fluids is related to ¢,
©., and O, as from equations (12). The above behavior can
therefore be interpreted in the light of Figs. 2 and 3 from which
it is possible to deduce that the maxima in ¢y and ¢, correspond
to axial positions where either the heat flux density or the wall-
to-fluid temperature difference are relatively high.

Distributions of o indicate that the effect of the radial ther-
mal resistence of the wall is dominant when K is low. Entropy
generation is a minimum in the central region and a maximum
at the extremities for K;=1. Such a trend is typical in the
absence of axial conduction (Pagliarini and Barozzi, 1984b).
The situation is completely reversed when Kj is very high. For
K,=10,000 a maximum is found in the middle of the wall
length, where the axial temperature gradient is higher. The
entropy production falls to zero at the wall extremities, where
the wall is isothermal. Case K= 100 represents an intermediate
situation where the entropy production rates due to the axial
and radial conduction tend to be in balance. All the above
trends are not substantially modified by variations of H over
the range covered by this analysis.

The role of the wall conductivity, K, has been particularly
stressed by the results. However, the significance of the ob-
servations is more general, results for low K, values being
representative of situations where the effect of heat conduction
along the wall is moderate, and vice versa.
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Table 1 Effectiveness of countercurrent heat exchangers, B=6 and

K, =1

A=05  L=10 | €

Pe;  H  Kept Ke= 10 100 1000 10000 10000 Kgpy

) [ U

500 05 83 415155 157 153 153 163 157
| 125 063 088 090 087 087 094 089
2 167 069 100 102 099 098 107 01

1000 05 167 067 095 098 095 095 101 097
1250 - 037 055 056 055 054 058 056
2 333 040 062 064 062 062 067 063

10000 0.5 1667 010 019 020 020 020 021 020
1 2500 005 011 012 012 012 012 012
2 3333 006 012 014 014 o3 014 013

A=05  L=100 | [

Pey  H  Kept Kg= I 10 100 1000 10000 10000%  Kopt

[ [ [t

500 05 83 572 655 662 647 597 666 662
1125 340 403 409 401 376 412 409
2 167 378 457 465 457 431 468 464

1000 05 167 378 456 464 459 438 467 464
1250 214 266 272 268 257 273 2N
2 333 234 298 305 302 289 307 304

10000 05 1667 067 096 100 100 098 10t 100
12500 037 055 058 058 056 058 057
2 3333 040 063 066 066 065 067 066

£=2 L=10 | €

Pey  H  Kept Kg= | 10 100 1000 10000 10000*  Kopt

[} § i

500 05 83 092 207 227 227 227 249 227
1125 048 15 128 128 128 141 128
2167 050 125 A4 142 142 156 142

1000 05 167 050 128 146 146 146 159 146
1 250 026 070 082 082 082 090 082
2 333 027 077 091 091 091 100 091

10000 05 1667 006 023 032 033 033 035 033
1 2500 003 013 018 018 018 020 018
2 3333 003 014 020 021 021 022 021

A=2 =100 | [

Pey  H o Kept  Ke= ! 10 100 1600 10000 10000*  Kopt

[ ! )

500 05 83 525 765 781 702 628 808 783
1 125 305 488 511 475 437 525 509
2 167 330 552 584 557 524 597 587

1000 05 167 335 570 605 571 520 620 602
1 250 184 337 364 351 331 373 362
223 194 372 406 395 376 415403

10000 05 1667 050 130 155 155 149 159 153
12500 026 072 087 087 084 090 086
2 3333 027 078 097 097 093 100 095

*: no axial conduction.

The number of the relevant nondimensional quantities being
so large, their influence on the thermal behavior of the device
cannot be considered in terms of the local entropy production
rate. The effect of each parameter is more conveniently esti-
mated by resorting to the total entropy production rate L, or
the heat exchanger effectiveness, €.

The nondimensional entropy generation rate £, and its com-

.ponents, L, I,, and L, are shown in Fig. 9. Values of ¢ for

changing A, L, Pe,, H, and K are presented in Table 1. Values
of effectiveness corresponding to the optimum value of the
wall conductivity, K, have also been computed by the same
procedure for all the cases considered, and results listed in
Table 1. K, is defined according to Chowdhury and Sarangi
(1983, equation (11)) and is a function of Pe; and H. Finally,
results in the absence of axial wall conduction are given for
the sake of comparison. These are for K;=10,000.

It is pointed out that the effectiveness of the heat exchanger
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no longer increases monotonically with K, as it would do in
the absence of axial conduction in the wall. Instead, for any
choice of Pe, and H, a minimum can be identified for I, and
a corresponding maximum for e at an intermediate value of
K.
For low K, most of the entropy production is concentrated
in the wall, due to the effect of radial heat conduction. In a
short heat exchanger (L = 10), while increasing K the contri-
bution of the wall decreases monotonically, the wall ap-
proaches an isothermal condition, I goes to Zero, and I;, L,
approach a constant value independent of K. In a long device
(L =100), however, the increase in the entropy production due
to axial conduction in the wall competes with the reduction in
the radial contribution for increasing K. Thus, a minimum is
observed in I, for K of order 100. This is found to be rep-
resentative of a condition of maximum effectiveness and min-
imum total entropy production. Neither a situation of the wall
being isothermal nor L having a constant value is usually found
in a long heat exchanger for K up to 10,000.

From data in Table 1, it is observed that ¢ is a minimum
for H=1 irrespective of the choice of other nondimensional
quantities. When analyzing the results in terms of the entropy
production rate, however, it is found that I, decreases and L,
increases systematically for increasing H from 0.5 to 2. Overall,
the total entropy production rate, L, is practically insensitive
to variations of H for short heat exchangers (L =10). Varia-
tions of L with H are less than 1 percent in those cases. The
same holds true for long heat exchangers (L = 100), provided
that Pe, = 1000. For lower values of Pe; and L = 100, however,
changing H from 0.5 to 2 produces a definite increase in I
(from 5 to 20 percent). From a second law point of view, then,
operating conditions corresponding to values of A higher than
one should be avoided in high-performance devices.

Increasing Pe, always reduces the negative influence of lon-
gitudinal heat conduction, but also causes deterioration in the
overall performance of the device.

Long heat exchangers are found to be more sensitive to the
variation of the wall conductivity than short devices. This
finding looks contradictory since the effect of axial heat con-
duction is expected to be more pronounced when L is low.
However, it must be emphasized that short heat exchangers
are basically characterized by a very high rate of entropy pro-
duction. Any additional contribution to it is thus of moderate
importance in relative terms.

Table 1 indicates that values of e are higher for A=2 than
for A=0.5. When interpreting such a behavior, it should be
born in mind that increasing A at equal Pe, and H produces
a relative increase of the mean fluid velocity of the external
stream, the flow rate remaining unchanged. The effectiveness
of the heat exchanger increases as a consequence. The same
holds true for reducing B as can be seen by comparing data
in Table 1 with results given in Table 2. The percentage re-
duction in effectiveness due to axial wall conduction definitely
increases for increasing wall thickness, while it is little influ-
enced by variations in the pipe diameter ratio. It is worth
pointing out, however, that the entropy production inherent
in the fluid-dynamic process is not taken into account in this
analysis. That term increases for an increase in the mean ve-
locity of flow.

All other quantities being fixed, the effectiveness also in-
creases monotonically for increasing Ky, as from Table 3. That
behavior should be ascribed to the reduction of the convective
thermal resistence of the external stream that occurs for in-
creasing Kj.

The criterion given by Chowdhury and Sarangi (1983) to
predict the optimum value of the wall conductivity was based
on some crude approximation. Nonetheless it is found to agree
very favorably with the results of the present analysis. From
data in Table 1, the values of e obtained for K;= K, system-
atically approach the maximum. The criterion tends to become
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Table 2 Effectiveness of countercurrent heat exchangers, B=3 and
K, =1

A=05 (=100 | €

Pey  H  Kopt Kg= | 10 100 1000 10000 Kopl

I} [ [

500 05 83 676 792 802 77 682 802
125 414 51 521 510 466 521
2 167 460 580 593 585 549 593

1000 05 167 - 472 601 616 605 561 615
I 250 270 359 370 366 346 369
2 333 292 398 412 408 391 4i1

10000 05 1667 088 147 158 158 154 157
12500 047 082 089 089 087 089
2 3333 050 091 099 099 097 098

Table 3 Effectiveness of countercurrent heat exchangers for different
values of K;; B=6 and Pe, =500 '

A=05  L=100] €

Pey H Kg= 1 10 100 1000 10000

1 i

500 05 192 200 201 199 195 Kg=0.1
1 113 119 120 119 16
2 134 142 143 141 437

500 0S5 572 £55 662 647 597 Ke=1
t 340 403 409 401 376
¢ 378 457 465 457 431

500 05 725 857 867 833 707 K=5
1 45t 568 581 568 508
2 2501 642 659 652 614

slightly less accurate and reliable when the effectiveness is very
low.

As far as concurrent flow heat exchangers are concerned,
computations have been restricted to the case of balanced flow,
H=1. Results have been presented elsewhere (Pagliarini and
Barozzi, 1984a). They indicate that the effects of axial con-
duction in the wall are minor, with respect to the corresponding
counterflow cases. Local quantities, such as the wall and the
fluid temperatures, are actually only moderately influenced.
The overall effectiveness of the device is totally unaffected by
the presence of heat conduction along the wall.

6 Concluding Remarks

Local and overall effects of thermal coupling in laminar
counterflow double-pipe heat exchangers have been considered
on account of axial heat conduction in the wall separating the
streams. The range covered by this analysis has been delib-
erately limited, in view of the considerable number of geo-
metric, thermal, and flow parameters involved in the problem.
A few conclusions of a general validity are however permitted.

It is observed first that conduction along the thermally active
wall may have a definite effect upon the distributions of the
most important thermal quantities, such as the wall temper-
ature, the heat flux, the bulk fluid temperature, and the Nusselt
number. The extent of such an influence depends however on
a number of geometric, thermal, and flow variables, forming
a set of seven independent nondimensional groups. Therefore,
local effects of thermal coupling and axial wall conduction

have been mainly concerned with the effect of the wall con-

ductivity parameter, K. The presence of axial wall conduction
is revealed by the wall temperature tending to become longi-
tudinally uniform. The effect starts at the wall extremities,
where two isothermal regions are observed, however low the
value of Kj is. These lengthen progressively for increasing Kj,
finally covering the entire heat transfer section as the wall
conductivity tends to infinity. Correspondingly, the two streams
become thermally uncoupled in the sense that each current
approaches the thermal behavior typical of a single-stream
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case, subject to the boundary condition of uniform wall tem-
perature. In the limit of high K| values, then, single-stream
Nur correlations apply.

The thermodynamic behavior of the equipment can either
be considered under a traditional first law point of view, or
expressed in terms of the entropy production rate following a
second law approach. It is observed that the two methods lead
to perfectly equivalent results as far as the overall performance
of the equipment is concerned. In fact, the heat exchanger
effectiveness, €, and the total entropy production rate, L, are
related in a very simple way. The second law approach, how-
ever, gives a deeper insight into the irreversible nature of the
heat transfer process, and therefore offers a more reliable
design tool.

The performance of countercurrent heat exchangers has been
investigated, as affected by the operative conditions, the ther-
mal properties of the wall and the fluids, and the geometry of
the equipment.

Results indicate that increasing the Peclet number, e.g., by
increasing the flow rate, while leaving constant the heat ca-
pacity ratio, H, always produces a reduction in the heat ex-
changer effectiveness. On the other hand, for increasing H
from 0.5 to 2, a minimum is observed in ¢, for balanced heat
exchangers. In terms of the entropy production rate, however,
it is found that the performance of the device is influenced
negatively by high values of H. That conclusion is of chief
concern for devices whose effectiveness is basically very high,
as is the case of a long heat exchanger. Increasing the fluid
conductivity ratio, Ky, has a strong and positive effect on
effectiveness. Changing the wall thickness or the diameter of
the outer duct, i.e., changing A or B, all other conditions being
unchanged, corresponds to considering a quite different phys-
ical situation. The results must therefore be interpreted with
some care. In any case they indicate a reduction of the per-
formance in the case of a long and very efficient heat ex-
changer, both for decreasing A and increasing B. Also note
that relatively high values for the wall thickness have been used
in the present analysis to emphasize the influence of axial wall
conduction on local quantities. Results are however of practical
significance, since they offer clear directions for conduction-
penalty minimization.

The effects of the wall conductivity have been particularly
stressed in the analysis. It is found that a region of minimum
entropy production always exists in the range of variability
considered for K. The need for optimizing the wall conduc-
tivity becomes the more stringent as the equipment effective-
ness increases. In this connection, the simple criterion suggested
by Chowdhury and Sarangi (1983) has been proved to give
reliable indications over a wide range of operative conditions.
Thus, the analysis indicates that a proper choice of the wall
material is needed for the thermal performance optimization
of laminar flow double pipe heat exchangers. To exemplify,
if heat is exchanged between two countercurrent water streams
separated by a copper wall (K= 600), axial conduction in the
wall is expected to produce a small, but definite, decrease in
the effectiveness. The optimum value could be attained using
a steel wall, characterized by a K value of about 100. If,
instead, a glass wall is used, the order of magnitude of K drops
to 1, and the effectiveness decreases sharply due to the intro-
duction of a high radial thermal resistance. The effects of axial
wall conduction are more pronounced when gaseous fluids are
considered. If, indeed, two air streams and a cooper wall are
used, K, becomes higher than 10,000. A reduction of a few
percentage units in the device effectiveness can result, with
respect to the optimum value. Once again, the latter can be
approximated using a steel wall (K= 1000).

As far as concurrent flow heat exchangers are concerned,
previous work (Pagliarini and Barozzi, 1984a) has demon-
strated that the effects of wall conductivity are minor.

This conclusion, however, is restricted to the case of bal-
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anced heat exchangers, and further analyses are needed to
generalize it.
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An Analysis of Heat Transfer in
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Josephson Junction Devices

. Josephson junctions are electronic devices made from superconducting materials
that cycle between resistive and nonresistive states. Heat generated in the resistive

State causes a temperature rise, which may adversely affect electrical behavior, by
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reducing the critical Josephson current. In this work, temperature distributions and
resulting reductions in critical current are calculated for Josephson junctions made

Jrom low and high-temperature superconductors. It is found that an unacceptable
reduction in critical current may occur for junctions made from high-temperature
materials. This problem can almost certainly be overcome, but perhaps at the expense
of one advantage of Josephson junctions, namely compactness.

Introduction

Josephson junctions are electronic devices fabricated from
superconductors. They have tremendous potential because of
their fast switching speeds and low power dissipation. In the
past, the major drawback of Josephson junction devices was
that they had to be cooled to below the critical temperature
of the superconducting materials, usually by immersion in
liquid helium. With the recent developments in new higher
temperature superconductors, there has been a resurgence in
the interest in Josephson junctions. This paper addresses the
thermal behavior of Josephson junctions as it relates to their
electrical behavior.

One typical configuration for a Josephson junction, known
as a Josephson tunnel junction, consists of a sandwich of two
thin superconducting layers with a ‘“barrier’’ of normal metal
or insulating material in between. When a current flows through
this sandwich, the electrical behavior depends on the value of
the current (see Fig. 1). If it is below some critical value, I,
superconducting pairs will tunnel through the barrier material;
the sandwich will then display zero resistance, and hence, zero
voltage drop. If the current exceeds the critical value, there
will then be a nonzero resistance and a voltage drop across the
sandwich. It is important to note that the critical Josephson
current is not the same as the critical current at which the bulk
superconducting material becomes normal. For instance, for
niobium nitride, the critical Josephson current density is on
the order of 2000 A/cm? (it is junction dependent), whereas
the bulk critical current density is on the order of 10° A/cm?
(at temperatures on the order of 0.8 T,).

Josephson junction logic devices work by switching rapidly
between the nonresistive and resistive states. When in the re-
sistive state, heat is generated, which will raise the temperature
of the junction. Temperature control is very important, be-
cause the critical Josephson current is temperature dependent
(see Fig. 2). An increase in temperature causes a decrease in
critical current, which can adversely affect the electrical be-
havior of the device. It is anticipated that this self-heating
effect will be exacerbated for high-temperature superconduc-
tors at higher operating temperatures, because the rate of heat
generation is expected to be higher. This will be discussed in
more detail later.

There has been a considerable amount of research on Jo-
sephson tunnel junctions using low-temperature superconduc-
tors. Recent research has generally concentrated on junctions
made of niobium nitride (NbN) rather than lead, because of
NbN’s mechanical hardness, large gap voltage, and high (rel-
ative to lead) superconducting transition temperature (15-16
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K). In this paper, NbN will be used as a representative low-
temperature superconductor. There has been some research on
the thermal aspects of Josephson tunnel junctions, which is
particularly relevant to the work reported here. Arnett (1983)
experimentally determined the critical power density at which
a particular niobium edge junction ceased to operate because
its transition temperature was exceeded. Ketchen (1979) per-
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formed a similar experiment for lead alloy junctions. Shoji et
al. (1987) experimentally investigated the temperature de-
pendence of the electrical characteristics of a NbN tunnel junc-
tion. There has also been research on thermal aspects of point
contact junctions (Iwanyshyn and Smith, 1972), microbridges
(Skopcol et al., 1974; Dharmadurai, 1980), and coplanar elec-
trode junctions (Jennings and Rubinsky, 1986).

Since high-temperature superconductors were discovered,
there have been many efforts to observe the Josephson effect
in these materials and to produce Josephson junctions with
them for possible applications. Some researchers have reported
successful fabrication of ‘‘crack’’ (Iguchi et al., 1987; Sugishita
et al., 1987), weak link (Wu et al., 1987; Wiener-Avnear et
al., 1989; Rogers et al., 1989), or edge (Laibowitz et al., 1990)
Josephson junctions from YBayCu;O7, (YBCO). The results
of Sugishita et al. show a linear temperature dependence of
the Josephson critical current, rather than the usual BCS-type
dependence shown in Fig. 2 (Ambegaokar and Baratoff, 1963).
To our knowledge there has not been a successful sandwich-
type Josephson junction fabricated with high-temperature su-
perconductors and operated at liguid nitrogen temperatures.

There has been a tremendous amount of research on thermal
modeling of electronic devices, which is certainly relevant to
the present work (see, for instance, Bar-Cohen and Kraus,
1988; Ellison, 1989). It is not the intent of this study to advance
the science of thermal modeling of electronics, but rather to
show how the temperature distribution in a Josephson junction
affects its electrical behavior.

Background and Problem Statement

The intent of this study is to (&) calculate the temperature
distribution in a Josephson junction as a function of the various
governing parameters, (b) evaluate the effect of the temper-
ature distribution on the critical Josephson current, and (c)
assess the important differences between junctions made from
low and high-temperature superconductors.

Heat is generated in the barrier region when it is in the
resistive state. The heat flux can be evaluated from the product
of the current density and voltage. Depending on how the
junction is operated, the current density and voltage could take
on a large range of values. The worst realistic case would be
for the current density to equal the critical current density, J,,
and the voltage to equal the gap voltage, V, (see Fig. 1). For
NbN, with critical current density on the order of 2000 A/cm?
and gap voltage of 4.5 mV, the heat flux is on the order of
10° W/m? The heat flux is expected to increase for high-

Nomenclature

temperature superconductors (Van Duzer, 1989). One reason
is that the gap voltage scales proportionally with transition
temperature, 7., so that:

q" =J Vel T, 6]

This alone will account for at least a sixfold increase in the
heat flux, since T is approximately 15 and 92 K for NbN and
YBCO, respectively. Another consideration is that higher op-
erating temperatures cause greater thermal noise. To enable
stable operation in the presence of the increased noise, the
current will have to scale proportionally with operating tem-
perature, T, (Van Duzer, 1989). That is:

L=J.A,x Ty 2

where A, is the barrier area. High-temperature superconduc-
tors are typically operated in liquid nitrogen (7, = 77 K),
whereas low-temperature superconductors are operated in lig-
uid helium (7, = 4.2 K). Thus there is more than an order
of magnitude increase in operating temperature. The thermal
noise criterion, equation (2), may or may not affect the heat
flux, depending on the critical current density that can be
achieved in Josephson junctions made from the new high-
temperature materials. If the critical current density in the new
materials is roughly the same as in the old low-temperature
materials, then the thermal noise criterion will not affect the
heat flux (cf. equation (1)), but the junction area will have to
scale up with operating temperature (cf. equation (2)). This
would be a significant disadvantage, because compactness and
the associated speed have always been strong points of Jo-
sephson junctions. If it is possible to maintain the same size
junctions by increasing the critical current density by an order
of magnitude over the low-temperature materials then the heat
flux will increase accordingly (cf. equation (1)).

The geometry of an electronic device made from Josephson
junctions is considerably more complicated than the simple
sandwich described earlier. In practice, a typical low-temper-
ature Josephson junction device consists of a silicon substrate
with multiple sandwich junctions arranged on its surface, and
a wiring pattern of additional superconducting material on top
of the junctions. The low-temperature material considered here
is niobium nitride (NbN). The entire device is put into some
sort of package and immersed in liquid helium. For lack of
better information, it is assumed here that device geometries
for high-temperature superconductors will not change sub-
stantially from the low-temperature technology, but that YBCO
replaces NbN as the superconductor, MgO replaces silicon as

electrode in x, y, z direc-

Ap = area of barrier = L} tions T, = superconducting transi-
A, = area of bottom electrode L, = barrier lateral dimension tion temperature
= L? L, = electrode lateral dimen- T, = temperature at top of
s = area of substrate associ- sion electrode
ated with a single junc- L, = lateral dimension of sub- T, = coolant temperature
tion = L2 strate associated with a Ve = sgap voltage
Bi = Biot number = hyH,/k, single junction X, ¥,z = coordinate directions
h = coolant heat transfer L = (L/2H,) Nk,/k, a = thermal diffusivity
coefficient g = time-averaged rate of v = Vo/la
her = effective heat transfer heat conducting into bot- ¢ = (2/H) Nky/ky
coefficient, equation (3) tom electrode n = y/H,
H, = electrode thickness G” = time-averaged heat flux 0 = (T-To)/(T:—Ty)
H, = substrate thickness based on barrier area = 6, = 9 evaluated at top of
I, = critical Josephson current G/Ap . electrode
J. = critical Josephson current Q0 = §'H/k(T.—T.) , = 0, averaged over barrier
density = I./A, R = thermal resistance area
ks = substrate thermal conduc- t, = period of time varying £ = (x/H,) Vky/k,
tivity heat input w = frequency of oscillations
ky, ky, k, = thermal conductivity of T = temperature ‘ of heat input = 27/1,
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Fig. 3 Infinite square array of square Josephson junctions
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the substrate, and nitrogen replaces helium as the coolant. A
““generic’’ geometry is defined below, with dimensions that
can be varied in the analysis.

The generic geometry considered here is an infinite square
array of square Josephson junctions on a substrate, as shown
in Fig. 3. Since the array is infinite, the planes midway between
adjacent junctions are symmetry planes, and are therefore
adiabatic. Thus, the problem can be reduced to modeling a
single junction. The geometry of a single junction module is
shown in Fig. 4 (not drawn to scale). The junction itself consists
of a bottom electrode and a smaller top electrode, separated
by an extremely thin barrier (dark region). This sandwich is
placed on top of the substrate. The top electrode is connected
to another superconducting layer (the wiring). The cross-
hatched regions are electrical insulation. Typical dimensions
of the various layers for NbN technology (Spargo and Kerber,
1989) are given in Table 1. It can be seen from the table that
the barrier is extremely thin compared to the electrodes, and
the electrodes are very thin compared to the substrate.

Journal of Heat Transfer

Table 1 Dimensions of various material layers
Layer Thickness (pm)
From Bottom to Top:

Substrate 300
Bottom Electrode 0.1
Barrier 0.001
Top Electrode 0.1
Top Wiring 0.4
Electrical Insulation 0.3

A number of simplifications are made in analyzing this de-
vice. The major ones are stated now, and will be discussed in
the next section. The major simplifications are:

1 The problem is treated as steady-state,

2 The problem is reduced to consideration of the bottom
electrode only, with specified heat input at the barrier and heat
transfer to the substrate at the bottom face.

3 Heat transfer from the bottom electrode to the substrate
is modeled using an effective heat transfer coefficient, which
accounts for all resistances between the electrode and the cool-
ant.

Analysis

Steady-State Assumption. During operation, Josephson
junctions typically cycle between a resistive and nonresistive
state. The heat generation in the barrier is therefore a periodic
function of time, with a period on the order of nanoseconds.
Nonetheless, a steady-state analysis can be justified. To dem-
onstrate this, a simple one-dimensional model problem is con-
sidered. In the next section it will be argued that most of the
heat conducts downward through the bottom electrode, sub-
strate, and package to the coolant. The model problem is
therefore chosen to consist of a slab of thickness A and thermal
diffusivity &, which is intended to correspond in an approxi-
mate fashion to the bottom electrode, substrate, and package.
This slab is exposed to a periodic heat flux at the upper surface,
q” (t) = g”"(1 + cos wt), and a specified temperature, T,
at the lower surface. After the initial transient has passed, the
solution consists of a steady part corresponding to the average
heat flux, g§“, and a fluctuating part corresponding to the
fluctuating heat flux, §” cos wt. The temperature is highest at
the top of the electrode, and the amplitude of the fluctuations
is also largest there. Furthermore, the temperature at the top
of the electrode governs the electrical behavior of the junction.
For these reasons, this temperature is used as the criterion to
determine whether the problem can be treated as steady-state.
It can be shown that the amplitude of the fluctuating part of
this temperature (normalized by the steady part) is a function
of yH, where v = ~w/2c. In particular, for yH>3, this
function is approximated by (x/i’yH y~ !, accurate to within 0.5
percent. Now, an extremely conservative estimate of v/ can
be made by taking H to be the substrate thickness of 300 um
(even though the package is orders of magnitude larger), and
taking o to be the value for the silicon substrate at 4.2 K,
namely o = 3 m?/s (Touloukian et al., 1970). (This is higher

"than for most materials, and is orders of magnitude higher

than the value at 77 K.) Then, with w = 2x/t,, where #, is the
period (on the order of 1077 9), (\/E'yH)*1 is less than 0.1.
This says that even for this extremely conservative estimate,
the fluctuating part of the temperature is less than 10 percent
of the steady part, and a steady-state analysis is therefore well
justified. Put another way, the thermal time constant of the
device, H*/a, is so large compared to the period of the fluc-
tuations, #,, that the fluctuations are almost completely damped
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out, even at the location of the periodic heat input. The steady-
state temperature should then be calculated based on the time-
averaged value of the heat flux, g”, not the maximum value
that occurs when the junction is in its resistive state.

Justification for Considering Bottom Electrode Only. 1the
heat generated in the barrier may conduct upward into the top
electrode or downward into the bottom electrode. The parti-
tioning of the total heat generation between the two directions
is determined by the thermal resistances in the two directions.
In practice, the substrate is typically bonded to a heat sink or
package, which has a large area exposed to the coolant. In this
case, the thermal resistance is much less in the ‘“‘downward”’
than the ‘“‘upward’’ direction, and most of the heat conducts
into the bottom electrode. This is the situation modeled here.
However, if the upper surface of the junction were also in
contact with a large heat sink exposed to the coolant, then the
thermal resistances in the two directions would be comparable,
and roughly half of the heat would conduct downward into
the bottom electrode. It should be noted that the magnitude
of the heat generation in junctions made from the new materials
is not yet known to within an order of magnitude, so a factor
of two uncertainty is not cause for concern. Later in the paper,
the heating rate (in nondimensional form) will be varied over
a broad range.

Heat Transfer Coefficient at Bottom of Electrode. An ef-
fective heat transfer coefficient is now defined that describes
the rate of heat transfer leaving the bottom of the electrode.
This accounts for all thermal resistances between the bottom
of the electrode and the coolant. It is defined as:

-9
Ae(Teb“ Too)

where A, is the electrode area, and T, is the temperature at
the bottom of the electrode. Now:

Too—To=(Tep—To) + (T — Tgp) + (Top— T) (4a)
=G[Rp+ Rs+ R;] (4b)

where Ty and T, are the temperatures at the top and bottom
of the substrate, respectively, R, is the thermal boundary re-
sistance between the electrode and the substrate, R is the
resistance of the substrate, and R, is the resistance between
the substrate and coolant, which depends strongly on the design
of the package. The orders of magnitude of the various re-
sistances are now considered.

3

Regr =

1 Thermal Boundary Resistance, R,. At very low tem-
peratures, thermal resistance occurs at the interface between
two different substances due to phonon scattering. According
to acoustic mismatch theory, the resistance (times area), R, A4.,
is inversely proportional to 773, where T is absolute tempera-
ture. The constant of proportionality is on the order of 1073
m2-K*/W for a variety of pairs of materials (Swartz and Pohl,
1987; Swartz, 1987; Schmidt, 1977). Thusat T = 4.2 K, R, A,
is on the order of 107> m?-K/W, while at T = 77 K, RyA, is
on the order of 10~° m*-K/W. Experimental data for a variety
of different materials show excellent agreement with the acous-
tic mismatch theory at temperatures below about 30 K, but at
higher temperatures the measured thermal resistances are about
an order of magnitude higher than the predictions, that is,
R, A, is on the order of 1073m>*K/W at 77 K (Swartz and
Pohl, 1987).

2 Substrate Resistance, R;. 'The substrate resistance con-
sists of a conduction resistance and a constriction resistance.
The conduction resistance is given by R.ona. = Hy/k;As, Where
A, = L2is the substrate area associated with a single junction
(see Fig. 4). The constriction resistance is Reopy. = ¥/ksL,,
where ¥ is a constant, which is order one or less for a variety
of different geometries (Yovanovich and Antonetti, 1988). The
ratio of these resistances is:
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The electrode dimension, L., is typically .on the order of 10
pm, and H; is approximately 300 um. Since one advantage of
Josephson junctions is their compactness, the ratio A,/A4, is
typically not large, perhaps between 1 (the minimum possible
value) and 10. Therefore, Ronst./Reona. 18 generally less than
one, which says that the constriction resistance does not dom-
inate. Thus, the substrate resistance is the same order of mag-
nitude as the conduction resistance, which can be written (for
later convenience) as:

H; A,
Sl 6
k. A, (©

The thermal conductivity of silicon at 4.2 K is about 150 W/
m-K (Touloukian et al., 1970), and the thermal conductivity
of MgO at 77 K is about 490 W/m-K (from the equation in
Flik et al., 1990, which is a fit to the data of Slack, 1962).
Thus, with A;/A, ranging once again between 1 and 10, R A,
varies between order 107 and 10~® m?-K/W for both mate-
rials.

3 Resistance Between Substrate and Coolant, R,. This
resistance depends strongly on the design of the package. A
crude upper bound on R, can be found by assuming that there
is no package, that is, that the substrate is in direct contact
with the coolant. Assuming nucleate boiling, the heat transfer
coefficient A for boiling helium on a silicon surface is on the
order of 10*to 10° W/m*K (Flint et al., 1982) and for nitrogen
it is the same order of magnitude (Merte and Clark, 1964).
The corresponding resistance is R, = 1/hA4,, or:

14,

R,A,= 7 A, O]
which is at most 10™* m*K/W. However, a well-designed
package could reduce this value by orders of magnitude.

It is now possible to estimate the range of values of the
effective heat transfer coefficient defined by equation (3).
Equation 4 (b) is rewritten here, and the orders of magnitude
of the various terms inside the brackets are given beneath it
(in m%-K/W):

R;A,=

Ty To = —A?-[RbAe + R, A, + R,A, 1
e
10°%at 42K 1077t0 107% 107* or less
107%at 77K ®

If the substrate is directly exposed to the coolant or if the
package is not well-designed, the resistance R, could dominate,
and the total resistance could be as large as 10™* m?-K/W.,
However, if the package is well designed, then this resistance
could possibly become negligible compared to the remaining
resistances. In this case, at 4.2 K, the thermal boundary re-
sistance dominates, and the total resistance is order 107}
m2-K/W. At 77 K, the substrate conduction resistance dom-
inates, and the total resistance could be as low as 1077 m?-
K/W. The substrate conduction resistance (equation (6)) could
be reduced still further by increasing the spacing between junc-
tions (i.e., increasing A,/A.), but this would probably be un-
acceptable from the viewpoint of compactness and the

-associated speed. Finally, then, the effective heat transfer coef-

ficient defined by equation (3) could take on the following
ranges:

. 10* to 10° W/m?*K, at 4.2 K ©)
= 110% to 107 W/m2K, at 77 K

Three-Dimensional Temperature Distribution in Bottom

Electrode. Finally, the problem has been reduced to one of
finding the temperature distribution in the bottom electrode
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(see Fig. 5, not drawn to scale). There is a specified constant
heat flux into the top face of the bottom electrode over the
barrier region. The remainder of the top and the sides are
insulated. The bottom face loses heat to the coolant. The
thermal conductivity will be allowed to be anisotropic, since
this is true for YBCO. However, in the interest of simplicity,
it is assumed that the thermal conductivity is the same in the
x and z directions, that the electrode is square, and that the
barrier dimension L, is half the electrode dimension L,. Then
the governing differential equation and boundary conditions
are, in nondimensional form;

2% 9% 8%
5?+an2+a§2_ 10)
.30
At¢=0, L: ag‘o (1la)
_ 30
At =0, L: T (11b)
At =0 ?—-Q:Biﬁ (12a)
dn
a0 \Q 0<2<1L”and0<§<lL“
Atg=1: —= 2 2 12b)

1 . ~ A -
dn 0 EL<,§<L or > L<¢<L

The solution is:

6= Q{ S G €08 Mok €OS Ay ;[\/x3,+ 22, cosh\/ A2+ A2y

n=1m=1

+Bi sinha/ A2 + xf,m}

+ D \bu 08 NuE[Ny cosh Ay + Bi sinh A

n=1

+ Zc,,, €08 Am{Thm cosh A,m+ Bi sinh A,m]

m=1
SRy
a\Bi "

M=nx/L

(13)

(14

4 sin N,L/2 sin N, L/72

NI IR {\/ A2+, sinh A/ A2+ M, + Bi cosh/ A2+ x?,,}

(15)
sin N, L/2
= 16
b nah (N, sinh A, +Bi cosh \,) (16)
i /2
sin AL/ a7

m S N (A Sinh A, + Bi cosh \,,)

It can be seen that the solution for the nondimensional tem-
perature § = (T~ To)/(T.— T,) depends on Bi = A H,/k,,
Q = G"H,/k,(T,—T.), and L = (L./2H,)\ k,/k,. It can be
noted that 6 is directly proportional to Q. A different non-
dimensional temperature §/Q could have been defined, thereby
eliminating the parameter Q from the problem. However, the
present nondimensional temperature is more physically mean-
ingful, since it is a measure of how close the temperature is
to the transition temperature. Also, when it comes to evaluating
the effect of the temperature on the critical current, the pa-
rameter Q becomes necessary, and the present nondimension-
alization is more convenient. It can also be seen from the
parameter L that the effect of anisotropic thermal conductivity

Journal of Heat Transfer

is comparable to changing the aspect ratio of the electrode,
i.e., increasing the thermal conductivity in the x-z plane is
equivalent to decreasing the electrode dimension L.

Evaluation of Critical Current. The critical Josephson cur-
rent density is determined by the temperature of the barrier,
which is approximately equal to the temperature at the top of
the electrode, T, (neglecting Kapitza and contact resistance
between the electrode and barrier). If the temperature locally
exceeds the trapsition temperature, then the superconductor
(electrode) will go normal at that location. The current will
flow only through the portion of the superconductor that re-
mains below the transition temperature, so there will not be
any Joule heating within the superconducting material, only
in the barrier itself. The critical current that can pass through
the entire barrier is found by integrating the critical current
density over the barrier area:

Lp/2 aLp/2
Ic=4§ 5 JAT)dxdz
0 0

(18)

In the interest of simplicity, a linear relationship between crit-
ical current density and temperature is assumed here. A linear
relationship is a reasonable approximation to the BCS-type
dependence shown in Fig. 2, in the range between T, and T,
especially for YBCQ, for which 7,/7, = 0.84. Furthermore,
some preliminary experimental results have shown that the
critical current density depends linearly on temperature for a
crack junction made from YBCO (Sugishita et al., 1987). (This
will not necessarily carry over to a sandwich-type junction).
At any rate, it will be assumed that J,(T) = max [3(T.—T),
0], where 8 is a constant of proportionality. Then the reduction
in critical current relative to the critical current at the coolant
temperature is given by:

q
b4
- L./2 - 5 H,
vy a i
. 7/
"X
- Le/2 o
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y
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Fig. 5 Bottam electrode
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Table 2 Low and high temperature exampies

Case Q L Bi 6, I/ o
Low T, 0.00021 | 50 | 0.0045 | 0.025 | 0.975
1 High T, | 0.017 50 { 0.0045 | 202 | 0.0
2" High T, | 0.017 16 | 0.0045 | 1.15 | 0.001
34 High T, | 0.00093 | 215 | 0.0045 | 0.176 | 0.824
4" High T, | 0.017 50 | 0.45 0.050 | 0.950

Ly/2 ‘L,,/z _
Ic :_‘%S S maX[Tc TI,()] dxdz
Ic(Too) Lb 0 0 Tc_Too (19)
4 (L2 pL?
== S S (1 —min[6,, 11) dxdz
L} Jo 0

It can be seen that if 6, is less than unity over the entire barrier
area, then I./1. ., is simply equal to 1 — 8,, where 6, is the average
value of §, over the barrier area. If 6, exceeds unity over some
portion of the barrier area, this simple relation no longer holds.
If 6, exceeds unity over the entire barrier area, the critical
current will go to zero. This technique for calculating the
critical current reduction in a superconductor due to a tem-
perature rise has been used previously by Flik and Tien (1988),
with regard to the buik critical current.

Results and Discussion

Temperature Distributions. Some sample comparisons of
low and high-temperature superconductors are now presented.
Table 2 shows the parameter values (Q, L, and Bi), and two
results of the analysis, namely 6; and I./I, .. Recall that 8, is
the average value of 6, over the barrier area, and if 6, is less
than unity over the entire barrier area, then I./I, ., is simply
equalto 1 — 6,

First, typical values of the mondimensional parameters are
determined for the low-temperature case. For NbN, it was
noted earlier that the heat flux in the resistive state is of order
10° W/m?. The time-averaged heat flux would be roughly half
as much, or 5x 10* W/m?. The effective heat transfer coef-
ficient is taken equal to the largest plausible value, 10° W/
m*K. The difference between the transition and coolant tem-
peratures is T,— T, = 11 K, and the geometric parameters are
taken to be L, = 10 um, H, = 0.1 um. After a thorough
search of the literature, national laboratories, and private in-
dustry, we have been unable to find a value for the thermal
conductivity of NbN in the superconducting state, Based on
data for other niobium alloys (Touloukian et al., 1970) it
appears that the thermal conductivity is of order 1-10
W/m-K at 4.2 K. For simplicity, the thermal conductivity of
NbN is taken to be 2.2 W/m-K, the value that is later used
for YBCO. It should be noted that the problem is solved in
nondimensional form, and the values of the nondimensional
parameters are later varied over broad ranges, so that the
results are not limited to this particular value for the thermal
conductivity of NbN. Finally, then, using the above values,
and assuming that the thermal conductivity is isotropic, the
parameter values for the low-T, case are as given in Table 2.

Now for the high-temperature case, the most important dif-
ference is the higher heat flux. In this first high-7, case, the

Biot number is held the same as for the low-temperature case, .

since this is within the range possible for the high-temperature
situation. The dimensions are also assumed to be the same as
for the low-temperature case, and the thermal conductivity is
assumed isotropic, so that I is the same as for the low-tem-
perature case. (The effects of Biot number and £ will be ex-
plored later.) If the dimensions are the same, then the current
density must scale up with operating temperature (recall equa-
tion (2)). Then the heat flux scales up with the product of
transition temperature and operating temperature (cf. equa-
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0.017, L = 50, Bi = 0.0045

tions (1) and (2)), so the heat flux is 5 x 10*(92+77)/(15+4.2)
= 5.6 x 10° W/m”. The thermal conductivity of YBCO is 2.2
W/m-K at 77 K (Hagen et al., 1989). (This is the out-of-plane
thermal conductivity. The effect of anisotropy will be discussed
later.) The temperature difference is 7,—~ T, = 15 K. Then,
with the same dimensions as the low-temperature case, the
parameters for the first high-T, case are as given in Table 2.

Since the only parameter that differs between the low-T,
and first high-T, cases is Q, and 6 is directly proportional to
Q, there is no need to show detailed results for both cases.
For the first high-T, case, the temperature distribution at the
top of the electrode is shown as an isotherm plot in Fig. 6.
Only the temperature at the top surface of the electrode is
presented, since this is what determines the critical current.
Because of symmetry, only one quarter of the electrode is
shown, and the heated area is only a quarter of that. The
temperature rise is quite large; over the entire heated area (the
barrier area) the temperature exceeds the superconducting tran-
sition temperature (#>1). This causes the critical current to
decrease to zero (cf. equation (19)), so that the junction would
not be able to switch into the nonresistive state. For the low-
T, case, the isotherms would look identical, but the temper-
ature is smaller by a factor of 81. In that case, the temperature
is not elevated significantly above the coolant temperature,
and the critical current would only be reduced to I./I.. =
0.975 (see Table 2). To summarize, in the low-7, case the
critical current is only reduced by 2.5 percent, whereas in the
first high-T, case the critical current is reduced to zero as a
result of the heat flux being higher by about two orders of
magnitude,

The thermal conductivity of YBCO is anisotropic due to the
crystal structure. Hagen et al. (1989) measured the thermal
conductivity of crystals of YBCO, and found that the con-
ductivity in the in-plane (ab) direction is typically four to five
times greater than in the out-of-plane (c¢) direction. In addi-
tion, the thermal conductivity of a thin film is both anisotropic
(with a higher conductivity in the plane of the film than normal
to it) and size dependent (Flik and Tien, 1988). The thermal
conductivities in the three coordinate directions would there-
fore depend on the orientation of the crystals and the film
thickness. As an example, the thermal conductivity in the x-
z plane is taken to be 10 times greater than that in the y
direction. Thus, Bi and Q remain unchanged, but I decreases
to 16. The parameters for this second high-7,, case are given
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in Table 2, and an isotherm plot is shown in Fig. 7. The results
are as expected, namely that there is enhanced conduction in
the x—z plane, which increases the temperature in the unheated
region and decreases the temperature in the heated region.
However, the temperature still exceeds the transition temper-
ature over nearly the entire barrier area, so the critical current
would be almost zero (see Table 2).

The first high-T, case discussed earlier assumed that high-
temperature junctions could be fabricated such that the current
density scales up with operating temperatures. Let us now
consider what happens if instead the current density is the same
as for low-temperature junctions. Then the barrier area will
have to scale up with operating temperature (equation (2)).

Journal of Heat Transfer

Maintaining the same ratio of barrier to electrode area, the
electrode dimension must increase relative to the old value of
10 pm as L, = 10 pme(77/4.2)" = 43 ym, and £ = 215. If
the current density is unchanged from the low-temperature
case, then the heat flux does not scale up with operating tem-
perature, only with transition temperature, so ¢’ = 5 X
10%4(92/15) = 3.1 x 10° W/m?, and Q = 9.3 x 107* This
is less than five times greater than the low-T, case, and is almost
twenty times less than the first high-7, case. The parameters
for this third high-T, case are given in Table 2. The reduction
in Q is a tremendous advantage. In the first high-T, case, 6
= 2.0, whereas in the third high-T, case §, = 0.18 (s¢e Table
2). In this latter case, the temperature would nowhere exceed
the transition temperature, and the critical current would be
reduced to I./I. . = 0.82, compared to zero in the first high-
T. case. Therefore, from the perspective of temperature con-
trol, it is clearly advantageous to use larger electrodes with
lower current densities, and hence lower heat fluxes. However,
this might not be acceptable from the point of view of com-
pactness and speed.

It is conceivable that, for the high-temperature case, the
effective heat transfer coefficient might be two orders of mag-
nitude higher than the value assumed so far of 10° W/m%*K
(recall equation (9)). This would mean that the Biot number
would also be larger by two orders of magnitude, i.e., Bi =
0.45. This is the fourth high-7, case. From Table 2, the increase
in Bi would cause a very significant decrease in the temperature,
to 8, = 0.050. The critical current would only be reduced by
5 percent, i.e., I./I. . = 0.95.

The effects of the parameters Bi and L will now be discussed
in a more general manner. Figure 8 shows the value of 6, divided
by Q, as a function of Bi and . An increase in the Biot number
corresponds to an increased heat transfer coefficient, and
therefore causes a decrease in temperature. A decrease in I,
causes 0, to decrease. The reason is that a decrease in L cor-
responds to a decrease in the aspect ratio L,/H, or in the
conductivity ratio k,/k,. In either case, conduction in the x-
z plane is enhanced, causing heat to spread out more in the
electrode, thereby reducing the average temperature over the
heated section. However, for I greater than about 50 there is
little effect of this parameter, except for very low Bi.

It is also interesting to consider some limiting cases. For
small Bi and large £, heat conducts from the barrier area
straight through the electrode without spreading out (since
large L implies negligible lateral conduction), and the external
resistance dominates (due to the small Biot number). There-
fore, T;— T, = q” /heg, or 0,/Q = 1/Bi. This line is shown
in Fig. 8, and the approximation is seen to hold very accurately
for Bi less than about 0.3 and L greater than about 50. For
small Bi and small £, the temperature rise is less than this
simple prediction, because of enhanced conduction in the x-
z plane. As I goes to zero (still for small Bi), the heat can be
assumed to conduct through the entire electrode area, rather
than just the barrier area, so that 7,— T, = §” Ap/heseA,, OF
6/Q = (1/Bi)(Ay/A,) = 1/4Bi for the case considered here.
This is seen to be reasonably accurate for I, = 10 and Bi less
than about 0.01. For Bi greater than about 0.3, the temperature
exceeds both of these predictions, because the thermal resist-
ance of the electrode is significant and there is a nonnegligible
temperature rise between the bottom and top of the electrode.
For large Bi, the resistance of the electrode dominates: the
external 